Missing data

Jelena Bradic Exploratory Data Analysis and Inference University of California San Diego

©2019 Jelena Bradoc

Missing data mechanisms

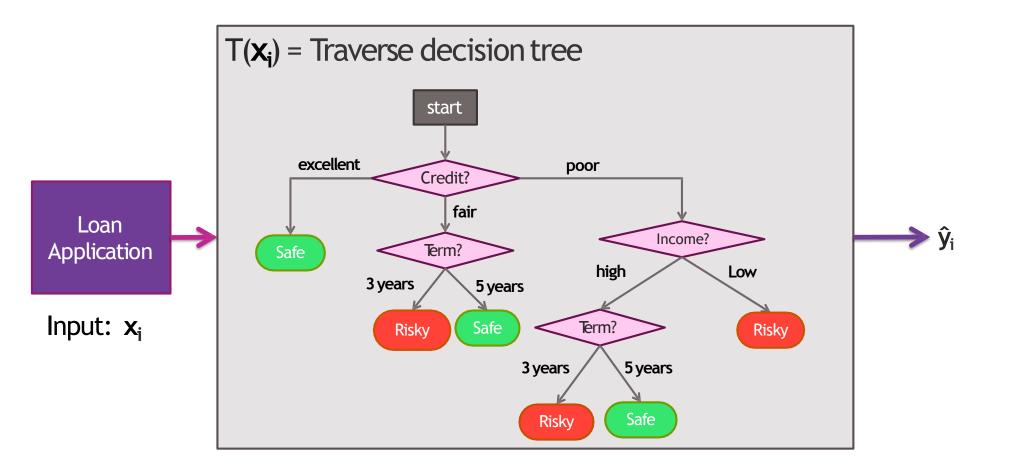
Unrealistic

- Missingness completely at random
 - A variable is missing completely at random if the probability of missingness is the same for all units, for example, if each survey respondent decides whether to answer the "earnings" question by rolling a die and refusing to answer if a "6" shows up. If data are missing completely at random, then throwing out cases with missing data does not bias your inferences.
- Missingness at random (ignorability assumption)
 - The probability a variable is missing depends only on available information. Thus, if sex, race, education, and age are recorded for all the people in the survey, then "earnings" is missing at random if the probability of nonresponse to this question depends only on these other, fully recorded variables

More realistic

- Missigness that depends on the unobserved covariates
 - Missingness is no longer "at random" if it depends on information that has not been recorded and this information also predicts the missing values. A familiar example from medical studies is that if a particular treatment causes discomfort, a patient is more likely to drop out of the study. If missingness is not at random, it must be explicitly modeled, or else you must accept some bias in your inferences
- Missigness that depends on the missing value itself (censoring)
 - The probability of missingness depends on the (potentially missing) variable itself. For example, suppose that people with higher earnings are less likely to reveal them.

Decision tree review



So far: data always completely observed

Term	Income	У
3 yrs	high	safe
5 yrs	low	risky
3 yrs	high	safe
5 yrs	high	risky
3 yrs	low	risky
5 yrs	low	safe
3 yrs	high	risky
5 yrs	low	safe
3 yrs	high	safe
	3 yrs 5 yrs 3 yrs 5 yrs 3 yrs 5 yrs 3 yrs 5 yrs	3 yrshigh5 yrslow3 yrshigh5 yrshigh3 yrslow5 yrslow3 yrslow5 yrslow3 yrshigh1000low1000low1000low1000low1000low1000low1000low1000low1000low1000low1000low1000low1000low1000low1000low1000low1000low

Known x and y values for all data points

Missing data

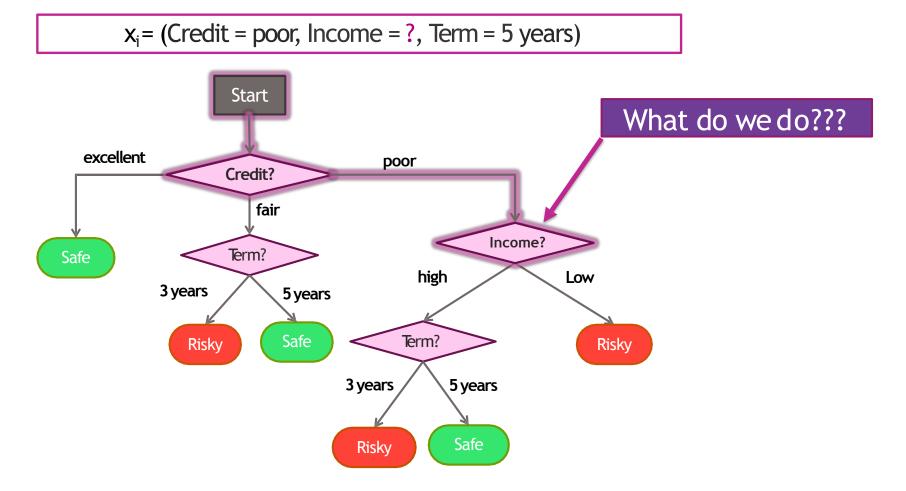
Credit	Term	Income	у	
excellent	3 yrs	high	safe	
fair	?	low	risky	
fair	3 yrs	high	safe	
poor	5 yrs	high	risky	
excellent	3 yrs	low	risky	
fair	5 yrs	high	safe	Loan application
poor	?	high	risky	🔶 may be
poor	5 yrs	low	safe	3 or 5 years
fair	?	high	safe	

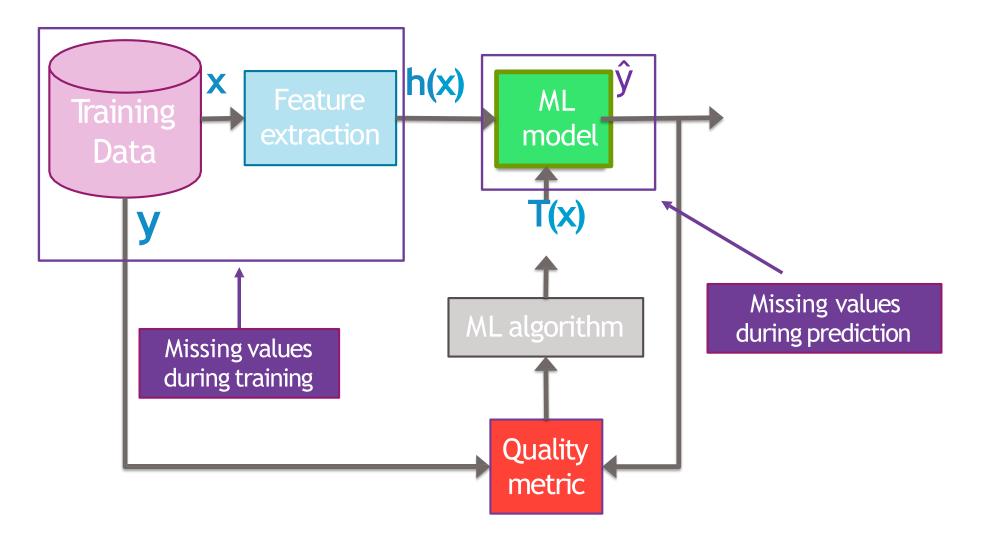
MATH 189: Exploratory Data Analysis and Inference

Missing values impact training and predictions

- 1. Training data: Contains "unknown" values
- 2. Predictions: Input at prediction time contains "unknown" values

Missing values during prediction



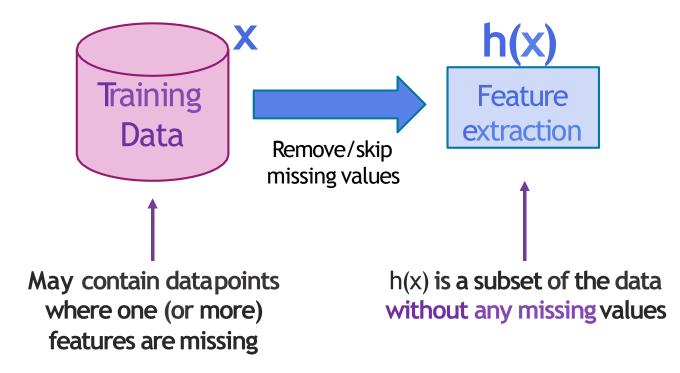


Handling missing data Strategy 1: Purification by skipping

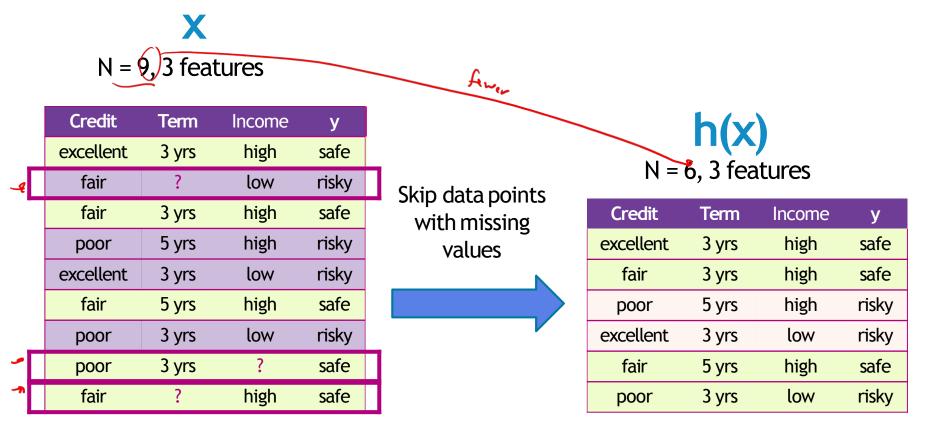
©2019 Jelena Bradic

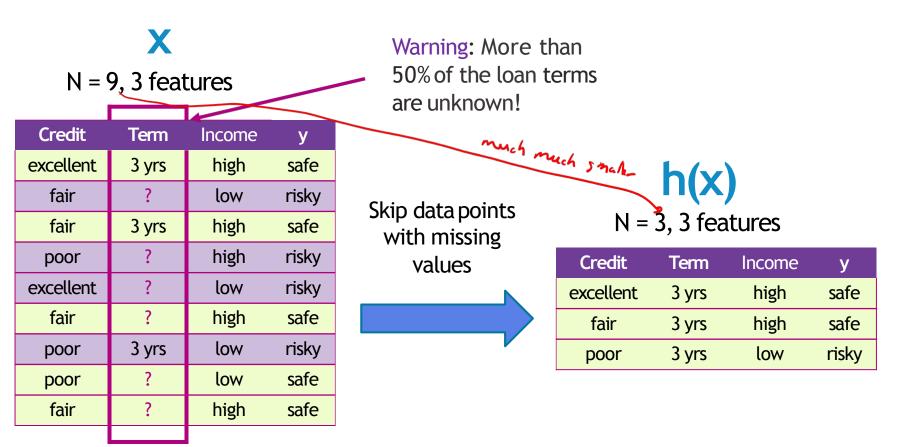
MATH 189: Exploratory Data Analysis and Inference

Idea 1: Purification by skipping/removing



Idea 1: Skip data points with missing values





The challenge with Idea 1

Idea 2: Skip features with missing values

	X		fe	wer Features	h	(x)	
N = 9	9, 3 feat	tures			N = 9, 2	(X) Ž feature	es
Credit	Term	Income	У		Credit	Income	у
excellent	3 yrs	high	safe		excellent	high	safe
fair	?	low	risky	Skip features	fair	low	risky
fair	3 yrs	high	safe	with many	fair	high	safe
poor	?	high	risky	missing values	poor	high	risky
excellent	?	low	risky		excellent	low	risky
fair	5 yrs	high	safe		fair	high	safe
poor	?	high	risky		poor	high	risky
poor	?	low	safe		poor	low	safe
fair	?	high	safe		fair	high	safe
		1					

Missing value skipping: Ideas 1 & 2

Idea 1: Skip data points where any feature contains a missing value

- Make sure only a few data points are skipped

Idea 2: Skip an entire feature if it's missing for many data points

- Make sure only a few features are skipped

Missing value skipping: Pros and Cons

Pros

- Easy to understand and implement
- Can be applied to anymodel (decision trees, logistic regression, linear regression,...)

Cons

- Removing data points and features may remove important information from data
- Unclear when it's better to remove data points versus features
- Doesn't help if data is missing at prediction time

Handling missing data Strategy 2: Prification by imputing

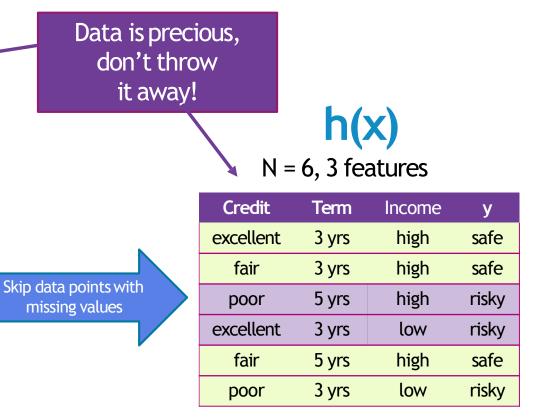
©2019 Jelena Bradic

MATH 189: Exploratory Data Analysis and Inference

Main drawback of skippingstrategy

N = 9, 3 features Credit Term Income У excellent 3 yrs high safe fair ? low risky 3 yrs safe fair high 5 yrs high risky poor excellent 3 yrs low risky fair high safe 5 yrs 3 yrs low risky poor ? safe low poor ? fair high safe

X

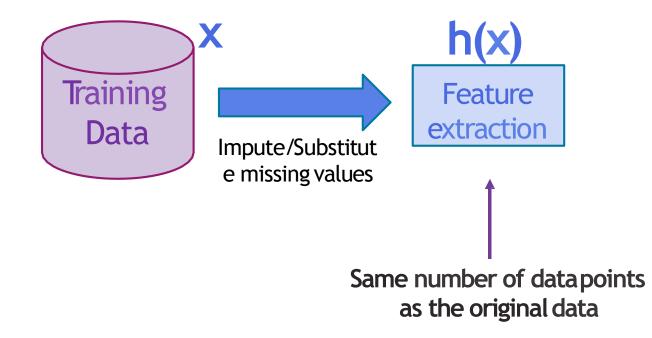


Can we keep all the data?

credit	term	income	у
excellent	3 yrs	high	safe
fair	?	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	high	safe
poor	3 yrs	high	risky
poor	?	low	safe
fair	?	high	safe

Use other data points in x to "guess" the "?"

Idea 2: Purification by imputing



Idea 2: Imputation/Substitution

N = 9, 3 features

Credit	Term	Income	у	
excellent	3 yrs	high	safe	Fill i
fair	?	low	risky	value
fair	3 yrs	high	safe	value
poor	5 yrs	high	risky	
excellent	3 yrs	low	risky	
fair	5 yrs	high	safe	
poor	3 yrs	high	risky	
poor	(low	safe	
fair	$\overline{(}$	high	safe	

Fill in each missing value with a calculated guess

N = 9, 3 features

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	3 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	high	safe
poor	3 yrs	high	risky
poor	3 yrs	low	safe
fair	3 yrs	high	safe

Example: Replace ? with most common value

			year lo year lo	
Credit	Term	Income	У	
excellent	3 yrs	high	safe	
fair	?	low	risky	
fair	3 yrs	high	safe	
poor	5 yrs	high	risky	P
excellent	3 yrs	low	risky	
fair	5 yrs	high	safe	
poor	3 yrs	high	risky	
poor	?	low	safe	
fair	?	high	safe	
				•

Purification by imputing

simple

-Best guess

Term	Income	У
3 yrs	high	safe
3 yrs	low	risky
3 yrs	high	safe
5 yrs	high	risky
3 yrs	low	risky
5 yrs	high	safe
3 yrs	high	risky
3 yrs	low	safe
3 yrs	high	safe
	3 yrs 3 yrs 3 yrs 5 yrs 3 yrs 5 yrs 3 yrs 3 yrs	3 yrshigh3 yrslow3 yrshigh5 yrshigh3 yrslow5 yrshigh3 yrslow3 yrshigh3 yrslow

Common (simple) rules for purification by imputation

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	?	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	high	safe
poor	3 yrs	high	risky
poor	?	low	safe
fair	?	high	safe

Impute each feature with missing values:

- 1. Categorical features use mode: Most popular value (mode) of non-missing x_i
- 2. Numerical features use average or median: Average or median value of non-missing x_i

Many advanced methods exist, e.g., expectation-maximization (EM) algorithm

Missing value imputation: Pros and Cons

Pros

- Easy to understand and implement
- Can be applied to any model (decision trees, logistic regression, linear regression,...)
- Can be used at prediction time: use same imputation rules

Cons

• May result in systematic errors

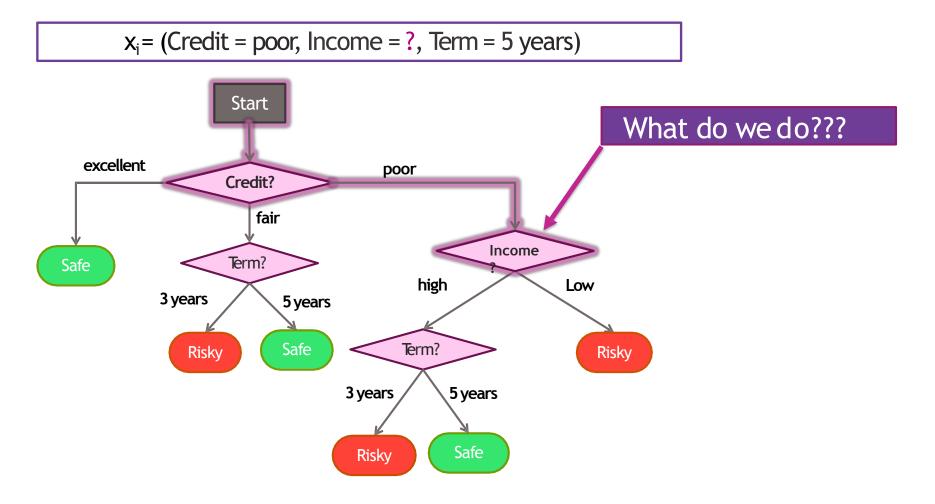
Example: Feature "age" missing in all banks in Washington by state law

Handling missing data Strategy 3: Adapt learning algorithm to be robust to missing values

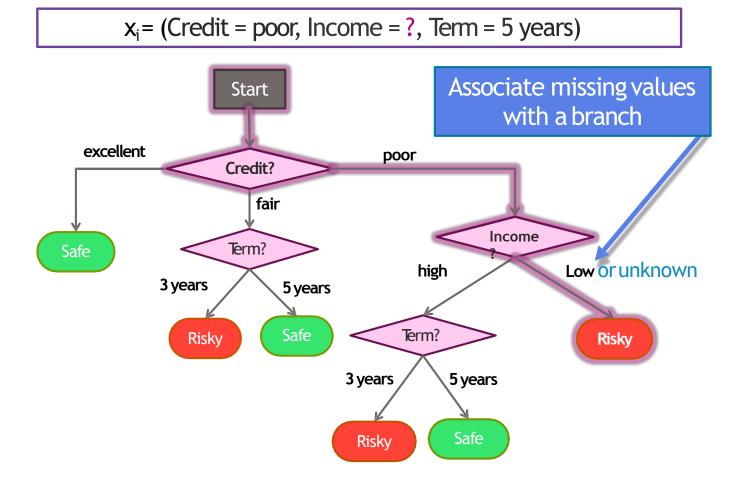
©2019 Jelena Bradic

MATH 189: Exploratory Data Analysis and Inference

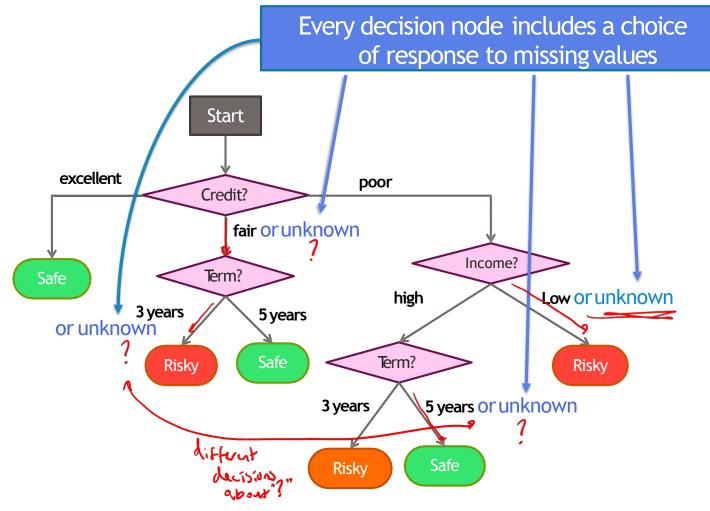
Missing values during prediction: revisited



Add missing values to the tree definition



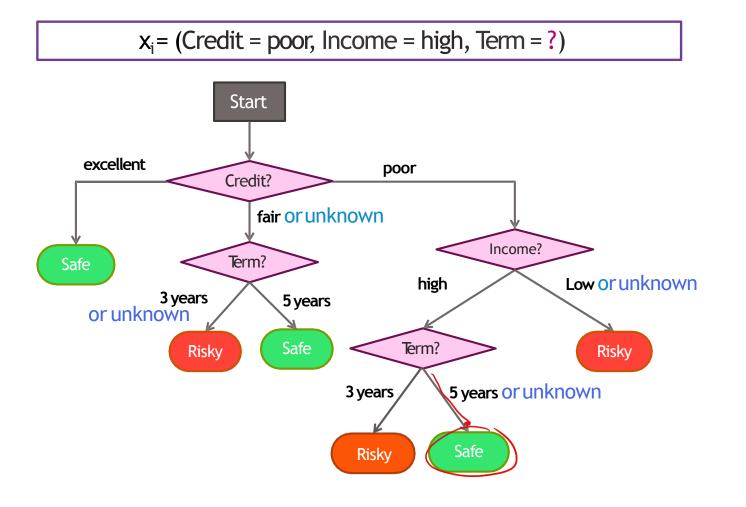
Add missing value choice to every decision node



Prediction with missing values becomes simple

x_i= (Credit = ?, Income = high, Term = 5 years) Start excellent poor Credit? fair or unknown Income? Term? Safe Low or unknown high 3 years 5 years or unknown Safe Term? **Risky** Risky 5 years or unknown 3 years Safe **Risky**

Prediction with missing values becomes simple



Explicitly handling missing data by learning algorithm: Pros and Cons

Pros

- Addresses training and prediction time
- More accurate predictions

Cons

- Requires modification of learning algorithm
 - Very simple for decision trees

Feature split selection with missing data

©2019 Jelena Bradic

MATH 189: Exploratory Data Analysis and Inference

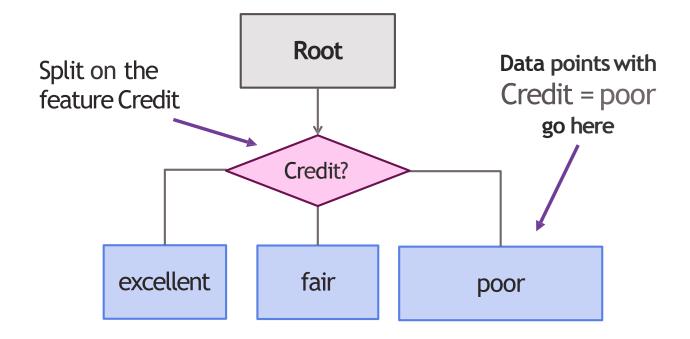
Greedy decision tree learning

- Step 1: Start with an empty tree
- Step 2: Select a feature to split data
- For each split of the tree:
 - Step 3: If nothing moreto, make predictions
 - Step 4: Otherwise, go to Step 2 & continue (recurse) on thissplit

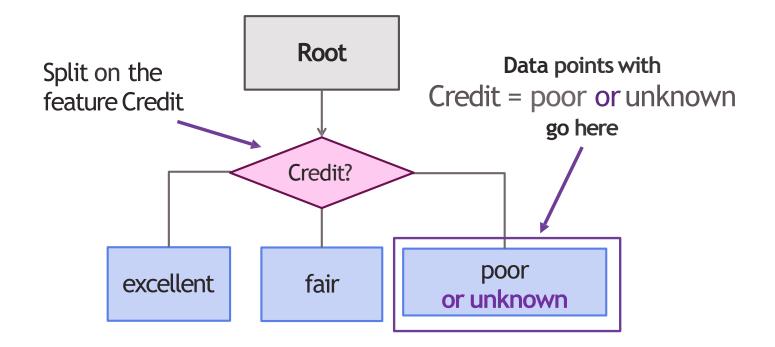
Pick feature split leading to lowest classification error

Must select feature & branch for missing values!

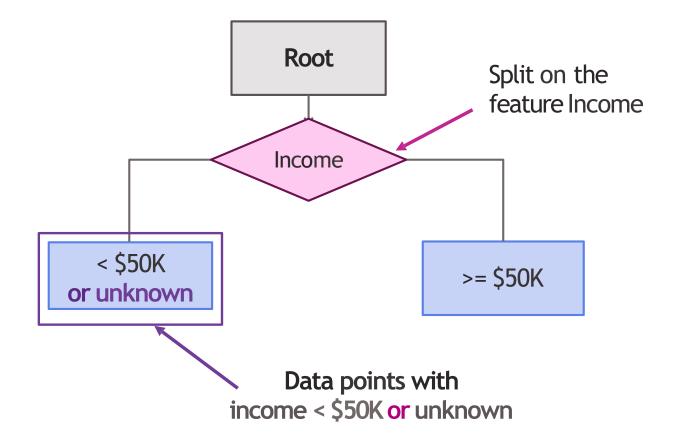
Feature split (without missing values)



Feature split (with missing values)



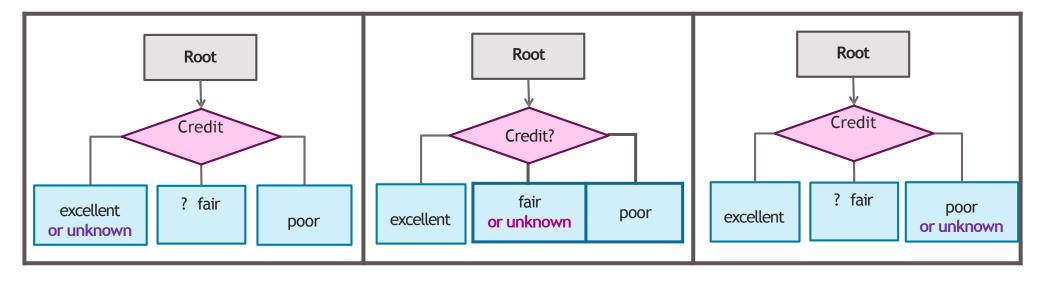
Missing value handling in threshold splits



Should missing go left, right, or middle?

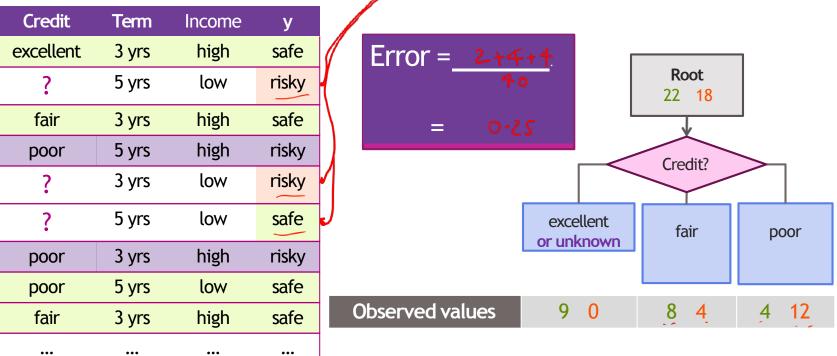
Choose branch that leads to lowest classification error!

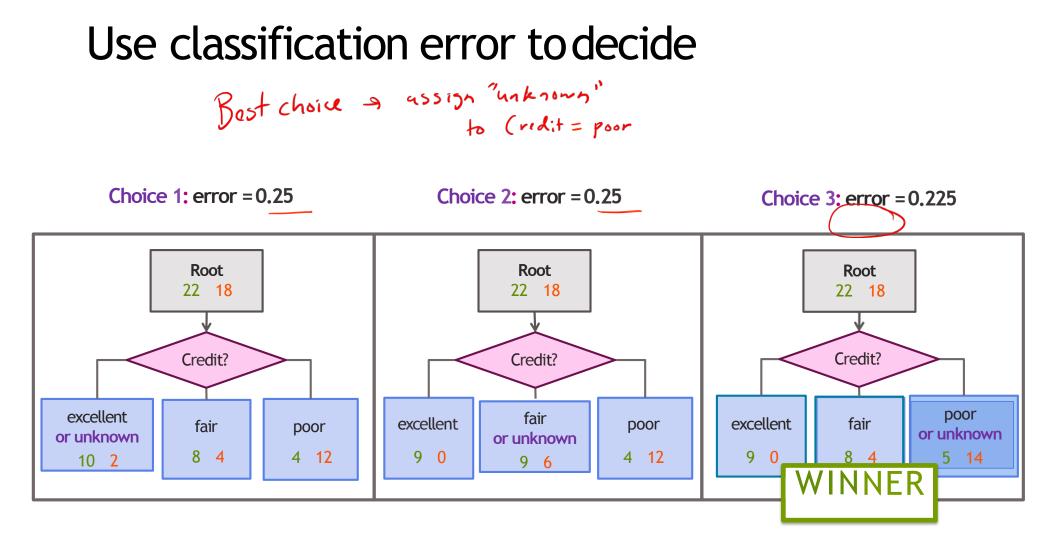
Choice 1: Missing values go with Credit=excellent Choice 2: Missing values go with Credit=fair Choice 3: Missing values go with Credit=poor



Computing classification error of decision stump with missing data

N = 40, 3 features





Feature split selection algorithm with missing value handling

- Given a subset of data M (a node in a tree)
- For each feature h_i(x):
 - 1. Split data points of M where $h_i(x)$ is *not* "unknown" according to feature $h_i(x)$
 - 2. Consider assigning data points with "unknown" value for $h_i(x)$ to each branch
 - A. Compute classification error split & branch assignment of "unknown" values
- Chose feature h^{*}(x) & branch assignment of "unknown" with lowest classification error

Summary of handling missing data

©2019l Jelena Bradic

MATH 189: Exploratory Data Analysis and Inference

What you can donow...

Describe common ways to handling missing data:

- 1. Skip all rows with any missing values
- 2. Skip features with many missing values
- 3. Impute missing values using other data points

Modify learning algorithm (decision trees) to handle missing data:

- 1. Missing values get added to one branch of split
- 2. Use classification error to determine where missing values go