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Trees, Bagging, Random Forests and Boosting

• Classification Trees

• Bagging: Averaging Trees

• Random Forests: Cleverer Averaging of Trees

• Boosting: Cleverest Averaging of Trees

Methods for improving the performance of weak learners such as
Trees. Classification trees are adaptive and robust, but do not
generalize well. The techniques discussed here enhance their
performance considerably.
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Two-class Classification

• Observations are classified into two or more classes, coded by a
response variable Y taking values 1, 2, . . . , K.

• We have a feature vector X = (X1, X2, . . . , Xp), and we hope
to build a classification rule C(X) to assign a class label to an
individual with feature X.

• We have a sample of pairs (yi, xi), i = 1, . . . , N . Note that
each of the xi are vectors xi = (xi1, xi2, . . . , xip).

• Example: Y indicates whether an email is spam or not. X

represents the relative frequency of a subset of specially chosen
words in the email message.

• The technology described here estimates C(X) directly, or via
the probability function P (C = k|X).
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Classification Trees

• Represented by a series of binary splits.

• Each internal node represents a value query on one of the
variables — e.g. “Is X3 > 0.4”. If the answer is “Yes”, go right,
else go left.

• The terminal nodes are the decision nodes. Typically each
terminal node is dominated by one of the classes.

• The tree is grown using training data, by recursive splitting.

• The tree is often pruned to an optimal size, evaluated by
cross-validation.

• New observations are classified by passing their X down to a
terminal node of the tree, and then using majority vote.
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Properties of Trees

✔ Can handle huge datasets

✔ Can handle mixed predictors—quantitative and qualitative

✔ Easily ignore redundant variables

✔ Handle missing data elegantly

✔ Small trees are easy to interpret

✖ large trees are hard to interpret

✖ Often prediction performance is poor
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Example: Predicting e-mail spam

• data from 4601 email messages

• goal: predict whether an email message is spam (junk email) or
good.

• input features: relative frequencies in a message of 57 of the
most commonly occurring words and punctuation marks in all
the training the email messages.

• for this problem not all errors are equal; we want to avoid
filtering out good email, while letting spam get through is not
desirable but less serious in its consequences.

• we coded spam as 1 and email as 0.

• A system like this would be trained for each user separately
(e.g. their word lists would be different)
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Predictors

• 48 quantitative predictors—the percentage of words in the
email that match a given word. Examples include business,
address, internet, free, and george. The idea was that these
could be customized for individual users.

• 6 quantitative predictors—the percentage of characters in the
email that match a given character. The characters are ch;,
ch(, ch[, ch!, ch$, and ch#.

• The average length of uninterrupted sequences of capital
letters: CAPAVE.

• The length of the longest uninterrupted sequence of capital
letters: CAPMAX.

• The sum of the length of uninterrupted sequences of capital
letters: CAPTOT.
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Details

• A test set of size 1536 was randomly chosen, leaving 3065
observations in the training set.

• A full tree was grown on the training set, with splitting
continuing until a minimum bucket size of 5 was reached.

• This bushy tree was pruned back using cost-complexity
pruning, and the tree size was chosen by 10-fold
cross-validation.

• We then compute the test error and ROC curve on the test
data.
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Some important features

39% of the training data were spam.

Average percentage of words or characters in an email message
equal to the indicated word or character. We have chosen the
words and characters showing the largest difference between spam

and email.

george you your hp free hpl

spam 0.00 2.26 1.38 0.02 0.52 0.01

email 1.27 1.27 0.44 0.90 0.07 0.43

! our re edu remove

spam 0.51 0.51 0.13 0.01 0.28

email 0.11 0.18 0.42 0.29 0.01
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ROC curve for pruned tree on SPAM data

o TREE − Error: 8.7%

SPAM Data

Overall error rate on test data:
8.7%.
ROC curve obtained by vary-
ing the threshold c0 of the clas-
sifier:
C(X) = +1 if P̂ (+1|X) > c0.
Sensitivity: proportion of true
spam identified
Specificity: proportion of true
email identified.

We may want specificity to be high, and suffer some spam:
Specificity : 95% =⇒ Sensitivity : 79%
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SVM  −  Error: 6.7%
TREE − Error: 8.7%

TREE vs SVM

Comparing ROC curves on
the test data is a good
way to compare classi-
fiers. SVM dominates
TREE here.
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Toy Classification Problem
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• Data X and Y , with Y

taking values +1 or −1.

• Here X = (X1, X2)

• The black boundary
is the Bayes Decision
Boundary - the best
one can do.

• Goal: Given N train-
ing pairs (Xi, Yi)
produce a classifier
Ĉ(X) ∈ {−1, 1}

• Also estimate the probability of the class labels P (Y = +1|X).
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Toy Example - No Noise
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Bayes Error Rate: 0
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2

X1

• Deterministic problem;
noise comes from sam-
pling distribution of X.

• Use a training sample
of size 200.

• Here Bayes Error is
0%.
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Classification Tree
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Decision Boundary: Tree
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X
2

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

1

1

1
1

1

1
1

1

1

1

1
1

1

1

1

1

11

1

1

1

1

1

1
1

1

1
1

1

1
1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

11
1

1

1

1 1

1

1

1

1

11 1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

11

1

1

1

1

1

1

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

00
0

0

0
0

0
0

0

0

0

0
0

0

0

0

0

0

0

0
0

0
0

0

0

0

0

0

0
0

0

0

0

0

00

0 0

0

0

0

0

0 0

00

0

0

0

0

0

0

0
0

0

0
0

0

0

0 0

0

0

0

00

0

0

0

0
0

0

Error Rate: 0.073

When the nested spheres
are in 10-dimensions, Clas-
sification Trees produces a
rather noisy and inaccurate
rule Ĉ(X), with error rates
around 30%.
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Model Averaging

Classification trees can be simple, but often produce noisy (bushy)
or weak (stunted) classifiers.

• Bagging (Breiman, 1996): Fit many large trees to
bootstrap-resampled versions of the training data, and classify
by majority vote.

• Boosting (Freund & Shapire, 1996): Fit many large or small
trees to reweighted versions of the training data. Classify by
weighted majority vote.

• Random Forests (Breiman 1999): Fancier version of bagging.

In general Boosting � Random Forests � Bagging � Single Tree.
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Bagging

Bagging or bootstrap aggregation averages a given procedure over
many samples, to reduce its variance — a poor man’s Bayes. See

pp 246.

Suppose C(S, x) is a classifier, such as a tree, based on our training
data S, producing a predicted class label at input point x.

To bag C, we draw bootstrap samples S∗1, . . .S∗B each of size N

with replacement from the training data. Then

Ĉbag(x) = Majority Vote {C(S∗b, x)}B
b=1.

Bagging can dramatically reduce the variance of unstable
procedures (like trees), leading to improved prediction. However
any simple structure in C (e.g a tree) is lost.
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Decision Boundary: Bagging
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Error Rate: 0.032

Bagging averages many
trees, and produces
smoother decision bound-
aries.
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Random forests

• refinement of bagged trees; quite popular

• at each tree split, a random sample of m features is drawn, and
only those m features are considered for splitting. Typically
m =

√
p or log2 p, where p is the number of features

• For each tree grown on a bootstrap sample, the error rate for
observations left out of the bootstrap sample is monitored.
This is called the “out-of-bag” error rate.

• random forests tries to improve on bagging by “de-correlating”
the trees. Each tree has the same expectation.
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ROC curve for TREE, SVM and Random Forest on SPAM data
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Random Forest − Error: 5.0%
SVM  −  Error: 6.7%
TREE − Error: 8.7%

TREE, SVM and RF

Random Forest dominates
both other methods on the
SPAM data — 5.0% error.
Used 500 trees with default
settings for random Forest

package in R.
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Training  Sample

Weighted  Sample

Weighted  Sample
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Training  Sample
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Weighted  SampleWeighted  Sample

Training  Sample
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Weighted  Sample

CM (x)

C3(x)

C2(x)

C1(x)

Boosting

• Average many trees, each
grown to re-weighted versions
of the training data.

• Final Classifier is weighted av-
erage of classifiers:

C(x) = sign
[∑M

m=1 αmCm(x)
]



Boosting Trevor Hastie, Stanford University 24

Number of Terms

T
es

t E
rr

or

0 100 200 300 400

0.
0

0.
1

0.
2

0.
3

0.
4 Bagging

AdaBoost

100 Node Trees

Boosting vs Bagging

• 2000 points from
Nested Spheres in R10

• Bayes error rate is 0%.

• Trees are grown best
first without pruning.

• Leftmost term is a sin-
gle tree.
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AdaBoost (Freund & Schapire, 1996)

1. Initialize the observation weights wi = 1/N, i = 1, 2, . . . , N .

2. For m = 1 to M repeat steps (a)–(d):

(a) Fit a classifier Cm(x) to the training data using weights wi.

(b) Compute weighted error of newest tree

errm =
∑N

i=1 wiI(yi �= Cm(xi))∑N
i=1 wi

.

(c) Compute αm = log[(1 − errm)/errm].

(d) Update weights for i = 1, . . . , N :
wi ← wi · exp[αm · I(yi �= Cm(xi))]
and renormalize to wi to sum to 1.

3. Output C(x) = sign
[∑M

m=1 αmCm(x)
]
.



Boosting Trevor Hastie, Stanford University 26

Boosting Iterations
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Boosting Stumps

A stump is a two-node
tree, after a single split.
Boosting stumps works
remarkably well on the
nested-spheres problem.



Boosting Trevor Hastie, Stanford University 27

Number of Terms

T
ra

in
 a

nd
 T

es
t E

rr
or

0 100 200 300 400 500 600

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 Training Error

• Nested spheres in 10-
Dimensions.

• Bayes error is 0%.

• Boosting drives the
training error to zero.

• Further iterations con-
tinue to improve test
error in many exam-
ples.
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Noisy Problems

• Nested Gaussians in
10-Dimensions.

• Bayes error is 25%.

• Boosting with stumps

• Here the test error
does increase, but quite
slowly.
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Stagewise Additive Modeling

Boosting builds an additive model

f(x) =
M∑

m=1

βmb(x; γm).

Here b(x, γm) is a tree, and γm parametrizes the splits.

We do things like that in statistics all the time!

• GAMs: f(x) =
∑

j fj(xj)

• Basis expansions: f(x) =
∑M

m=1 θmhm(x)

Traditionally the parameters fm, θm are fit jointly (i.e. least
squares, maximum likelihood).

With boosting, the parameters (βm, γm) are fit in a stagewise
fashion. This slows the process down, and overfits less quickly.
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Additive Trees

• Simple example: stagewise least-squares?

• Fix the past M − 1 functions, and update the Mth using a tree:

min
fM∈Tree(x)

E(Y −
M−1∑
m=1

fm(x) − fM (x))2

• If we define the current residuals to be

R = Y −
M−1∑
m=1

fm(x)

then at each stage we fit a tree to the residuals

min
fM∈Tree(x)

E(R − fM (x))2
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Stagewise Least Squares

Suppose we have available a basis family b(x; γ) parametrized by γ.

• After m − 1 steps, suppose we have the model
fm−1(x) =

∑m−1
j=1 βjb(x; γj).

• At the mth step we solve

min
β,γ

N∑
i=1

(yi − fm−1(xi) − βb(xi; γ))2

• Denoting the residuals at the mth stage by
rim = yi − fm−1(xi), the previous step amounts to

min
β,γ

(rim − βb(xi; γ))2,

• Thus the term βmb(x; γm) that best fits the current residuals is
added to the expansion at each step.
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Adaboost: Stagewise Modeling

• AdaBoost builds an additive logistic regression model

f(x) = log
Pr(Y = 1|x)

Pr(Y = −1|x)
=

M∑
m=1

αmGm(x)

by stagewise fitting using the loss function

L(y, f(x)) = exp(−y f(x)).

• Given the current fM−1(x), our solution for (βm, Gm) is

arg min
β,G

N∑
i=1

exp[−yi(fm−1(xi) + β G(x))]

where Gm(x) ∈ {−1, 1} is a tree classifier and βm is a
coefficient.
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• With w
(m)
i = exp(−yi fm−1(xi)), this can be re-expressed as

arg min
β,G

N∑
i=1

w
(m)
i exp(−β yi G(xi))

• We can show that this leads to the Adaboost algorithm; See

pp 305.



Boosting Trevor Hastie, Stanford University 34

-2 -1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Misclassification
Exponential
Binomial Deviance
Squared Error
Support Vector

L
o
ss

y · f

Why Exponential Loss?

• e−yF (x) is a monotone,
smooth upper bound on
misclassification loss at x.

• Leads to simple reweighting
scheme.

• Has logit transform as popu-
lation minimizer

f∗(x) =
1
2

log
Pr(Y = 1|x)

Pr(Y = −1|x)

• Other more robust loss func-
tions, like binomial deviance.
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General Stagewise Algorithm

We can do the same for more general loss functions, not only least
squares.

1. Initialize f0(x) = 0.

2. For m = 1 to M :

(a) Compute
(βm, γm) = arg minβ,γ

∑N
i=1 L(yi, fm−1(xi) + βb(xi; γ)).

(b) Set fm(x) = fm−1(x) + βmb(x; γm).

Sometimes we replace step (b) in item 2 by

(b∗) Set fm(x) = fm−1(x) + νβmb(x; γm)

Here ν is a shrinkage factor, and often ν < 0.1. Shrinkage slows the
stagewise model-building even more, and typically leads to better
performance.
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Gradient Boosting

• General boosting algorithm that works with a variety of
different loss functions. Models include regression, resistant
regression, K-class classification and risk modeling.

• Gradient Boosting builds additive tree models, for example, for
representing the logits in logistic regression.

• Tree size is a parameter that determines the order of
interaction (next slide).

• Gradient Boosting inherits all the good features of trees
(variable selection, missing data, mixed predictors), and
improves on the weak features, such as prediction performance.

• Gradient Boosting is described in detail in , section 10.10.
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Tree Size

The tree size J determines
the interaction order of the
model:

η(X) =
∑

j

ηj(Xj)

+
∑
jk

ηjk(Xj , Xk)

+
∑
jkl

ηjkl(Xj , Xk, Xl)

+ · · ·
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Stumps win!

Since the true decision boundary is the surface of a sphere, the
function that describes it has the form

f(X) = X2
1 + X2

2 + . . . + X2
p − c = 0.

Boosted stumps via Gradient Boosting returns reasonable
approximations to these quadratic functions.

Coordinate Functions for Additive Logistic Trees

f1(x1) f2(x2) f3(x3) f4(x4) f5(x5)

f6(x6) f7(x7) f8(x8) f9(x9) f10(x10)
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Spam Example Results

With 3000 training and 1500 test observations, Gradient Boosting
fits an additive logistic model

f(x) = log
Pr(spam|x)
Pr(email|x)

using trees with J = 6 terminal-node trees.

Gradient Boosting achieves a test error of 4%, compared to 5.3% for
an additive GAM, 5.0% for Random Forests, and 8.7% for CART.
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Spam: Variable Importance
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Spam: Partial Dependence
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Comparison of Learning Methods

Some characteristics of different learning methods.

Key: ● = good, ● =fair, and ● =poor.

Characteristic Neural
Nets

SVM CART GAM KNN,
Kernel

Gradient
Boost

Natural handling of data
of “mixed” type ● ● ● ● ● ●

Handling of missing val-
ues ● ● ● ● ● ●

Robustness to outliers in
input space ● ● ● ● ● ●

Insensitive to monotone
transformations of in-
puts

● ● ● ● ● ●

Computational scalabil-
ity (large N) ● ● ● ● ● ●

Ability to deal with irrel-
evant inputs ● ● ● ● ● ●

Ability to extract linear
combinations of features ● ● ● ● ● ●

Interpretability
● ● ● ● ● ●

Predictive power
● ● ● ● ● ●
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Software

• R: free GPL statistical computing environment available from
CRAN, implements the S language. Includes:

– randomForest: implementation of Leo Breimans algorithms.

– rpart: Terry Therneau’s implementation of classification
and regression trees.

– gbm: Greg Ridgeway’s implementation of Friedman’s
gradient boosting algorithm.

• Salford Systems: Commercial implementation of trees, random
forests and gradient boosting.

• Splus (Insightful): Commerical version of S.

• Weka: GPL software from University of Waikato, New Zealand.
Includes Trees, Random Forests and many other procedures.


