
Multiple regression

I Simple linear regression: Bivariate - two variables: y and x
I Multiple linear regression: Multiple variables: y and x1, x2, · · ·



Weights of books

weight (g) volume (cm3) cover
1 800 885 hc
2 950 1016 hc
3 1050 1125 hc
4 350 239 hc
5 750 701 hc
6 600 641 hc
7 1075 1228 hc
8 250 412 pb
9 700 953 pb

10 650 929 pb
11 975 1492 pb
12 350 419 pb
13 950 1010 pb
14 425 595 pb
15 725 1034 pb
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From: Maindonald, J.H. and Braun, W.J. (2nd ed., 2007) “Data Analysis and Graphics Using R”



Weights of books (cont.)

The scatterplot shows the re-
lationship between weights and
volumes of books as well as the
regression output. Which of the
below is correct?
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weight = 108 + 0.7 volume

R2= 80%

(a) Weights of 80% of the books can be predicted accurately using
this model.

(b) Books that are 10 cm3 over average are expected to weigh 7 g
over average.

(c) The correlation between weight and volume is
R = 0.802 = 0.64.

(d) The model underestimates the weight of the book with the
highest volume.
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Modeling weights of books using volume
somewhat abbreviated output...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 107.67931 88.37758 1.218 0.245

volume 0.70864 0.09746 7.271 6.26e-06

Residual standard error: 123.9 on 13 degrees of freedom

Multiple R-squared: 0.8026,Adjusted R-squared: 0.7875

F-statistic: 52.87 on 1 and 13 DF, p-value: 6.262e-06



Weights of hardcover and paperback books

Can you identify a trend in the relationship between volume and
weight of hardcover and paperback books?
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Weights of hardcover and paperback books

Can you identify a trend in the relationship between volume and
weight of hardcover and paperback books?

Paperbacks generally weigh less than hardcover books after controlling
for the bookÕs volume.
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Modeling weights of books using volume and cover type

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 197.96284 59.19274 3.344 0.005841 **

volume 0.71795 0.06153 11.669 6.6e-08 ***

cover:pb -184.04727 40.49420 -4.545 0.000672 ***

Residual standard error: 78.2 on 12 degrees of freedom

Multiple R-squared: 0.9275,Adjusted R-squared: 0.9154

F-statistic: 76.73 on 2 and 12 DF, p-value: 1.455e-07



Determining the reference level

Based on the regression output below, which level of cover is the
reference level? Note that pb: paperback.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.9628 59.1927 3.34 0.0058

volume 0.7180 0.0615 11.67 0.0000
cover:pb -184.0473 40.4942 -4.55 0.0007

(a) paperback

(b) hardcover
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Determining the reference level

Which of the below correctly describes the roles of variables in this
regression model?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.9628 59.1927 3.34 0.0058

volume 0.7180 0.0615 11.67 0.0000
cover:pb -184.0473 40.4942 -4.55 0.0007

(a) response: weight, explanatory: volume, paperback cover

(b) response: weight, explanatory: volume, hardcover cover

(c) response: volume, explanatory: weight, cover type

(d) response: weight, explanatory: volume, cover type
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Linear model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96 59.19 3.34 0.01

volume 0.72 0.06 11.67 0.00
cover:pb -184.05 40.49 -4.55 0.00

ŵeight = 197.96 + 0.72 volume − 184.05 cover : pb

1. For hardcover books: plug in 0 for cover

ŵeight = 197.96 + 0.72 volume − 184.05 × 0

= 197.96 + 0.72 volume

2. For paperback books: plug in 1 for cover

ŵeight = 197.96 + 0.72 volume − 184.05 × 1

= 13.91 + 0.72 volume
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Visualising the linear model
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Interpretation of the regression coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96 59.19 3.34 0.01

volume 0.72 0.06 11.67 0.00
cover:pb -184.05 40.49 -4.55 0.00

I Slope of volume: All else held constant, books that are 1 more
cubic centimeter in volume tend to weigh about 0.72 grams
more.

I Slope of cover: All else held constant, the model predicts that
paperback books weigh 184 grams lower than hardcover
books.

I Intercept: Hardcover books with no volume are expected on
average to weigh 198 grams.

I Obviously, the intercept does not make sense in context. It
only serves to adjust the height of the line.
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Prediction

Which of the following is the correct calculation for the predicted
weight of a paperback book that is 600 cm3?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96 59.19 3.34 0.01

volume 0.72 0.06 11.67 0.00
cover:pb -184.05 40.49 -4.55 0.00

(a) 197.96 + 0.72 * 600 - 184.05 * 1

(b) 184.05 + 0.72 * 600 - 197.96 * 1

(c) 197.96 + 0.72 * 600 - 184.05 * 0

(d) 197.96 + 0.72 * 1 - 184.05 * 600



Prediction

Which of the following is the correct calculation for the predicted
weight of a paperback book that is 600 cm3?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96 59.19 3.34 0.01

volume 0.72 0.06 11.67 0.00
cover:pb -184.05 40.49 -4.55 0.00

(a) 197.96 + 0.72 * 600 - 184.05 * 1 = 445.91 grams

(b) 184.05 + 0.72 * 600 - 197.96 * 1

(c) 197.96 + 0.72 * 600 - 184.05 * 0

(d) 197.96 + 0.72 * 1 - 184.05 * 600



Another example: Modeling kid’s test scores
Predicting cognitive test scores of three- and four-year-old children
using characteristics of their mothers. Data are from a survey of
adult American women and their children - a subsample from the
National Longitudinal Survey of Youth.

kid score mom hs mom iq mom work mom age
1 65 yes 121.12 yes 27
...

5 115 yes 92.75 yes 27
6 98 no 107.90 no 18
...

434 70 yes 91.25 yes 25

Gelman, Hill. Data Analysis Using Regression and Multilevel/Hierarchical Models. (2007) Cambridge University Press.



Interpreting the slope

What is the correct interpretation of the slope for mom’s IQ?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.59 9.22 2.13 0.03

mom hs:yes 5.09 2.31 2.20 0.03
mom iq 0.56 0.06 9.26 0.00

mom work:yes 2.54 2.35 1.08 0.28
mom age 0.22 0.33 0.66 0.51

, kids with mothers whose IQs are one point higher tend to score
on average 0.56 points higher.
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Interpreting the slope

What is the correct interpretation of the intercept?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.59 9.22 2.13 0.03

mom hs:yes 5.09 2.31 2.20 0.03
mom iq 0.56 0.06 9.26 0.00

mom work:yes 2.54 2.35 1.08 0.28
mom age 0.22 0.33 0.66 0.51

Kids whose moms haven’t gone to HS, did not work during the first
three years of the kid’s life, have an IQ of 0 and are 0 yrs old are
expected on average to score 19.59. Obviously, the intercept does
not make any sense in context.



Interpreting the slope

What is the correct interpretation of the slope for mom work?

Estimate Std. Error t value Pr(>|t|)
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mom age 0.22 0.33 0.66 0.51

All else being equal, kids whose moms worked during the first
three year’s of the kid’s life

(a) are estimated to score 2.54 points lower

(b) are estimated to score 2.54 points higher

than those whose moms did not work.
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Revisit: Modeling poverty

poverty
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Predicting poverty using % female householder

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.31 1.90 1.74 0.09

female house 0.69 0.16 4.32 0.00
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R = 0.53

R2 = 0.532 = 0.28



Another look at R2

R2 can be calculated in three ways:

1. square the correlation coefficient of x and y (how we have been
calculating it)

2. square the correlation coefficient of y and ŷ

3. based on definition:

R2 =
explained variability in y

total variability in y

Using ANOVA we can calculate the explained variability and total
variability in y.
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Sum of squares
Df Sum Sq Mean Sq F value Pr(>F)

female house 1 132.57 132.57 18.68 0.00
Residuals 49 347.68 7.10
Total 50 480.25

Sum of squares of y: SSTotal =
∑

(y − ȳ)2 = 480.25→ total variability

Sum of squares of residuals: SSError =
∑

e2
i = 347.68 → unexplained variability

Sum of squares of x: SSModel = SSTotal − SSError → explained variability

= 480.25 − 347.68 = 132.57

R2 =
explained variability

total variability
=

132.57
480.25

= 0.28 X
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(y − ȳ)2 = 480.25→ total variability

Sum of squares of residuals: SSError =
∑

e2
i = 347.68 → unexplained variability

Sum of squares of x: SSModel = SSTotal − SSError → explained variability

= 480.25 − 347.68 = 132.57

R2 =
explained variability

total variability
=

132.57
480.25

= 0.28 X



Sum of squares
Df Sum Sq Mean Sq F value Pr(>F)

female house 1 132.57 132.57 18.68 0.00
Residuals 49 347.68 7.10
Total 50 480.25

Sum of squares of y: SSTotal =
∑
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Why bother?

Why bother with another approach for calculating R2 when we had
a perfectly good way to calculate it as the correlation coefficient
squared?

I For single-predictor linear regression, having three ways to
calculate the same value may seem like overkill.

I However, in multiple linear regression, we can’t calculate R2

as the square of the correlation between x and y because we
have multiple xs.

I And next we’ll learn another measure of explained variability,
adjusted R2, that requires the use of the third approach, ratio
of explained and unexplained variability.
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Predicting poverty using % female hh + % white

Linear model: Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.58 5.78 -0.45 0.66

female house 0.89 0.24 3.67 0.00
white 0.04 0.04 1.08 0.29

ANOVA: Df Sum Sq Mean Sq F value Pr(>F)
female house 1 132.57 132.57 18.74 0.00
white 1 8.21 8.21 1.16 0.29
Residuals 48 339.47 7.07
Total 50 480.25

R2 =
explained variability

total variability
=

132.57 + 8.21
480.25

= 0.29
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Does adding the variable white to the model add valuable informa-
tion that wasn’t provided by female house?
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Collinearity between explanatory variables
poverty vs. % female head of household

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.31 1.90 1.74 0.09

female house 0.69 0.16 4.32 0.00

poverty vs. % female head of household and % female hh

Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.58 5.78 -0.45 0.66

female house 0.89 0.24 3.67 0.00
white 0.04 0.04 1.08 0.29



Collinearity between explanatory variables
poverty vs. % female head of household

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.31 1.90 1.74 0.09

female house 0.69 0.16 4.32 0.00

poverty vs. % female head of household and % female hh

Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.58 5.78 -0.45 0.66

female house 0.89 0.24 3.67 0.00
white 0.04 0.04 1.08 0.29



Collinearity between explanatory variables (cont.)

I Two predictor variables are said to be collinear when they are
correlated, and this collinearity complicates model estimation.
Remember: Predictors are also called explanatory or independent variables. Ideally,

they would be independent of each other.

I We don’t like adding predictors that are associated with each
other to the model, because often times the addition of such
variable brings nothing to the table. Instead, we prefer the
simplest best model, i.e. parsimonious model.

I While it’s impossible to avoid collinearity from arising in
observational data, experiments are usually designed to
prevent correlation among predictors.
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R2 vs. adjusted R2

R2 Adjusted R2

Model 1 (Single-predictor) 0.28 0.26

Model 2 (Multiple) 0.29 0.26

I When any variable is added to the model R2 increases.
I But if the added variable doesn’t really provide any new

information, or is completely unrelated, adjusted R2 does not
increase.
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Adjusted R2

Adjusted R2

R2
adj = 1 −

(
SSError

SSTotal
×

n − 1
n − p − 1

)
where n is the number of cases and p is the number of predictors
(explanatory variables) in the model.

I Because p is never negative, R2
adj will always be smaller than

R2.
I R2

adj applies a penalty for the number of predictors included in
the model.

I Therefore, we choose models with higher R2
adj over others.



Calculate adjusted R2

ANOVA: Df Sum Sq Mean Sq F value Pr(>F)
female house 1 132.57 132.57 18.74 0.0001
white 1 8.21 8.21 1.16 0.2868
Residuals 48 339.47 7.07
Total 50 480.25

R2
adj = 1 −

(
SSError

SSTotal
×

n − 1
n − p − 1

)

= 1 −
(
339.47
480.25

×
51 − 1

51 − 2 − 1

)
= 1 −

(
339.47
480.25

×
50
48

)
= 1 − 0.74

= 0.26
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Beauty in the classroom

I Data: Student evaluations of instructors’ beauty and teaching
quality for 463 courses at the University of Texas.

I Evaluations conducted at the end of semester, and the beauty
judgements were made later, by six students who had not
attended the classes and were not aware of the course
evaluations (2 upper level females, 2 upper level males, one
lower level female, one lower level male).

Hamermesh & Parker. (2004)“Beauty in the classroom: instructorsÕ pulchritude and putative pedagogical productivityÓ

Economics Education Review.



Professor rating vs. beauty
Professor evaluation score (higher score means better) vs. beauty
score (a score of 0 means average, negative score means below
average, and a positive score above average):
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Which of the below is correct based on the model output?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.19 0.03 167.24 0.00

beauty 0.13 0.03 4.00 0.00
R2 = 0.0336

(a) Model predicts 3.36% of professor ratings correctly.

(b) Beauty is not a significant predictor of professor evaluation.

(c) Professors who score 1 point above average in their beauty
score are tend to also score 0.13 points higher in their
evaluation.

(d) 3.36% of variability in beauty scores can be explained by
professor evaluation.

(e) The correlation coefficient could be
√

0.0336 = 0.18 or −0.18,
we can’t tell which is correct.
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Exploratory analysis

Any interesting features?

For a given beauty score,
are male professors evalu-
ated higher, lower, or about
the same as female profes-
sors?
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Exploratory analysis

Any interesting features?

Few females with very low
beauty scores.

For a given beauty score,
are male professors evalu-
ated higher, lower, or about
the same as female profes-
sors?
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Exploratory analysis

Any interesting features?

Few females with very low
beauty scores.

For a given beauty score,
are male professors evalu-
ated higher, lower, or about
the same as female profes-
sors?

Difficult to tell from this
plot only.
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Professor rating vs. beauty + gender

For a given beauty score, are male professors evaluated higher,
lower, or about the same as female professors?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.09 0.04 107.85 0.00

beauty 0.14 0.03 4.44 0.00
gender.male 0.17 0.05 3.38 0.00
R2

adj = 0.057

(a) higher

(b) lower

(c) about the same



Professor rating vs. beauty + gender

For a given beauty score, are male professors evaluated higher,
lower, or about the same as female professors?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.09 0.04 107.85 0.00

beauty 0.14 0.03 4.44 0.00
gender.male 0.17 0.05 3.38 0.00
R2

adj = 0.057

(a) higher → Beauty held constant, male professors are rated
0.17 points higher on average than female professors.

(b) lower

(c) about the same



Full model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.6282 0.1720 26.90 0.00

beauty 0.1080 0.0329 3.28 0.00
gender.male 0.2040 0.0528 3.87 0.00

age -0.0089 0.0032 -2.75 0.01
formal.yes 1 0.1511 0.0749 2.02 0.04
lower.yes 2 0.0582 0.0553 1.05 0.29

native.non english -0.2158 0.1147 -1.88 0.06
minority.yes -0.0707 0.0763 -0.93 0.35

students 3 -0.0004 0.0004 -1.03 0.30
tenure.tenure track 4 -0.1933 0.0847 -2.28 0.02

tenure.tenured -0.1574 0.0656 -2.40 0.02

1formal: picture wearing tie&jacket/blouse, levels: yes, no
2lower: lower division course, levels: yes, no
3students: number of students
4tenure: tenure status, levels: non-tenure track, tenure track, tenured



Hypotheses
Just as the interpretation of the slope parameters take into account
all other variables in the model, the hypotheses for testing for
significance of a predictor also takes into account all other
variables.

H0 : Bi = 0 when other explanatory variables are included in
the model.

HA : Bi , 0 when other explanatory variables are included in
the model.



Assessing significance: numerical variables

The p-value for age is 0.01. What does this indicate?

Estimate Std. Error t value Pr(>|t|)
...

age -0.0089 0.0032 -2.75 0.01
...

(a) Since p-value is positive, higher the professor’s age, the higher
we would expect them to be rated.

(b) If we keep all other variables in the model, there is strong
evidence that professor’s age is associated with their rating.

(c) Probability that the true slope parameter for age is 0 is 0.01.

(d) There is about 1% chance that the true slope parameter for
age is -0.0089.
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Assessing significance: categorical variables
Tenure is a categorical variable with 3 levels: non tenure track, tenure
track, tenured. Based on the model output given, which of the below is
false?

Estimate Std. Error t value Pr(>|t|)
...

tenure.tenure track -0.1933 0.0847 -2.28 0.02
tenure.tenured -0.1574 0.0656 -2.40 0.02

(a) Reference level is non tenure track.

(b) All else being equal, tenure track professors are rated, on
average, 0.19 points lower than non-tenure track professors.

(c) All else being equal, tenured professors are rated, on average,
0.16 points lower than non-tenure track professors.

(d) All else being equal, there is a significant difference between
the average ratings of tenure track and tenured professors.
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Assessing significance

Which predictors do not seem to meaningfully contribute to the
model, i.e. may not be significant predictors of professor’s rating
score?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.6282 0.1720 26.90 0.00

beauty 0.1080 0.0329 3.28 0.00
gender.male 0.2040 0.0528 3.87 0.00

age -0.0089 0.0032 -2.75 0.01
formal.yes 0.1511 0.0749 2.02 0.04
lower.yes 0.0582 0.0553 1.05 0.29

native.non english -0.2158 0.1147 -1.88 0.06
minority.yes -0.0707 0.0763 -0.93 0.35

students -0.0004 0.0004 -1.03 0.30
tenure.tenure track -0.1933 0.0847 -2.28 0.02

tenure.tenured -0.1574 0.0656 -2.40 0.02



Model selection strategies

Based on what we’ve learned so far, what are some ways you can
think of that can be used to determine which variables to keep in
the model and which to leave out?



Backward-elimination

1. R2
adj approach:
I Start with the full model
I Drop one variable at a time and record R2

adj of each smaller
model

I Pick the model with the highest increase in R2
adj

I Repeat until none of the models yield an increase in R2
adj

2. p-value approach:
I Start with the full model
I Drop the variable with the highest p-value and refit a smaller

model
I Repeat until all variables left in the model are significant



Backward-elimination: R2
adj approach

Step Variables included R2
adj

Full beauty + gender + age + formal + lower + native + minority + students + tenure 0.0839

Step 1 gender + age + formal + lower + native + minority + students + tenure 0.0642
beauty + age + formal + lower + native + minority + students + tenure 0.0557
beauty + gender + formal + lower + native + minority + students + tenure 0.0706
beauty + gender + age + lower + native + minority + students + tenure 0.0777
beauty + gender + age + formal + native + minority + students + tenure 0.0837
beauty + gender + age + formal + lower + minority + students + tenure 0.0788
beauty + gender + age + formal + lower + native + students + tenure 0.0842
beauty + gender + age + formal + lower + native + minority + tenure 0.0838
beauty + gender + age + formal + lower + native + minority + students 0.0733

Step 2 gender + age + formal + lower + native + students + tenure 0.0647
beauty + age + formal + lower + native + students + tenure 0.0543
beauty + gender + formal + lower + native + students + tenure 0.0708
beauty + gender + age + lower + native + students + tenure 0.0776
beauty + gender + age + formal + native + students + tenure 0.0846
beauty + gender + age + formal + lower + native + tenure 0.0844
beauty + gender + age + formal + lower + native + students 0.0725

Step 3 gender + age + formal + native + students + tenure 0.0653
beauty + age + formal + native + students + tenure 0.0534
beauty + gender + formal + native + students + tenure 0.0707
beauty + gender + age + native + students + tenure 0.0786
beauty + gender + age + formal + students + tenure 0.0756
beauty + gender + age + formal + native + tenure 0.0855
beauty + gender + age + formal + native + students 0.0713

Step 4 gender + age + formal + native + tenure 0.0667
beauty + age + formal + native + tenure 0.0553
beauty + gender + formal + native + tenure 0.0723
beauty + gender + age + native + tenure 0.0806
beauty + gender + age + formal + tenure 0.0773
beauty + gender + age + formal + native 0.0713
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step function in R

Call:

lm(formula = profevaluation ˜ beauty + gender + age + formal +

native + tenure, data = d)

Coefficients:

(Intercept) beauty gendermale

4.628435 0.105546 0.208079
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Backward-elimination: p − value approach
Step Variables included & p-value
Full beauty gender age formal lower native minority students tenure tenure

male yes yes non english yes tenure track tenured
0.00 0.00 0.01 0.04 0.29 0.06 0.35 0.30 0.02 0.02
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male yes yes non english tenure track tenured

0.00 0.00 0.01 0.04 0.38 0.03 0.34 0.02 0.01
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male yes non english tenure track tenured
0.00 0.00 0.01 0.05 0.02 0.44 0.01 0.01
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0.00 0.00 0.01 0.06 0.02 0.01 0.01
Step 4 beauty gender age native tenure tenure

male non english tenure track tenured
0.00 0.00 0.01 0.06 0.01 0.01

Step 5 beauty gender age tenure tenure
male tenure track tenured

0.00 0.00 0.01 0.01 0.01

Best model: beauty + gender + age + tenure
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Forward-selection

1. R2
adj approach:
I Start with regressions of response vs. each explanatory

variable
I Pick the model with the highest R2

adj
I Add the remaining variables one at a time to the existing

model, and once again pick the model with the highest R2
adj

I Repeat until the addition of any of the remanning variables
does not result in a higher R2

adj
2. p − value approach:

I Start with regressions of response vs. each explanatory
variable

I Pick the variable with the lowest significant p-value
I Add the remaining variables one at a time to the existing

model, and pick the variable with the lowest significant p-value
I Repeat until any of the remaining variables does not have a

significant p-value
In forward-selection the p-value approach isn’t any simpler
(you still need to fit a bunch of models), so there’s almost no
incentive to use it.



Selected model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.6284 0.1673 27.66 0.00

beauty 0.1055 0.0328 3.21 0.00
gender.male 0.2081 0.0519 4.01 0.00

age -0.0088 0.0032 -2.75 0.01
formal.yes 0.1324 0.0714 1.85 0.06

native:non english -0.2430 0.1080 -2.25 0.02
tenure:tenure track -0.2068 0.0839 -2.46 0.01

tenure:tenured -0.1760 0.0641 -2.74 0.01



Modeling conditions

ŷ = β0 + β1x1 + β2x2 + · · · + βpxp

The model depends on the following conditions

1. residuals are nearly normal (primary concern relates to
residuals that are outliers)

2. residuals have constant variability

3. residuals are independent

4. each variable is linearly related to the outcome

We often use graphical methods to check the validity of these
conditions, which we will go through in detail in the following slides.



(1) nearly normal residuals
normal probability plot and/or histogram of residuals:
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(2) constant variability in residuals
scatterplot of residuals and/or absolute value of residuals vs. fitted
(predicted):
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Checking constant variance - recap

I When we did simple linear regression (one explanatory
variable) we checked the constant variance condition using a
plot of residuals vs. x.

I With multiple linear regression (2+ explanatory variables) we
checked the constant variance condition using a plot of
residuals vs. fitted.

Why are we using different plots?



Checking constant variance - recap

I When we did simple linear regression (one explanatory
variable) we checked the constant variance condition using a
plot of residuals vs. x.

I With multiple linear regression (2+ explanatory variables) we
checked the constant variance condition using a plot of
residuals vs. fitted.

Why are we using different plots?

In multiple linear regression there are many explanatory variables,
so a plot of residuals vs. one of them wouldn’t give us the
complete picture.



(3) independent residuals
scatterplot of residuals vs. order of data collection:
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More on the condition of independent residuals

I Checking for independent residuals allows us to indirectly
check for independent observations.

I If observations and residuals are independent, we would not
expect to see an increasing or decreasing trend in the
scatterplot of residuals vs. order of data collection.

I This condition is often violated when we have time series
data. Such data require more advanced time series
regression techniques for proper analysis.



(4) linear relationships
scatterplot of residuals vs. each (numerical) explanatory variable:
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Note: We use residuals instead of the predictors on the y-axis so that we can still

check for linearity without worrying about other possible violations like collinearity

between the predictors.



Regression so far ...
At this point we have covered:

I Simple linear regression

I Relationship between numerical response and a numerical or
categorical predictor

I Multiple regression

I Relationship between numerical response and multiple
numerical and/or categorical predictors

What we haven’t seen is what to do when the predictors are weird
(nonlinear, complicated dependence structure, etc.) or when the
response is weird (categorical, count data, etc.)
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Odds
Odds are another way of quantifying the probability of an event,
commonly used in gambling (and logistic regression).

Odds
For some event E,

odds(E) =
P(E)
P(Ec)

=
P(E)

1 − P(E)

Similarly, if we are told the odds of E are x to y then

odds(E) =
x
y
=

x/(x + y)
y/(x + y)

which implies

P(E) = x/(x + y), P(Ec) = y/(x + y)



Example - Donner Party
In 1846 the Donner and Reed families left Springfield, Illinois, for
California by covered wagon. In July, the Donner Party, as it
became known, reached Fort Bridger, Wyoming. There its leaders
decided to attempt a new and untested rote to the Sacramento
Valley. Having reached its full size of 87 people and 20 wagons, the
party was delayed by a difficult crossing of the Wasatch Range and
again in the crossing of the desert west of the Great Salt Lake. The
group became stranded in the eastern Sierra Nevada mountains
when the region was hit by heavy snows in late October. By the
time the last survivor was rescued on April 21, 1847, 40 of the 87
members had died from famine and exposure to extreme cold.

From Ramsey, F.L. and Schafer, D.W. (2002). The Statistical Sleuth: A Course in Methods of Data Analysis (2nd ed)



Example - Donner Party - Data

Age Sex Status
1 23.00 Male Died
2 40.00 Female Survived
3 40.00 Male Survived
4 30.00 Male Died
5 28.00 Male Died
...

...
...

...

43 23.00 Male Survived
44 24.00 Male Died
45 25.00 Female Survived



Example - Donner Party - EDA
Status vs. Gender:

Male Female
Died 20 5

Survived 10 10

Status vs. Age:

Died Survived
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Example - Donner Party
It seems clear that both age and gender have an effect on
someone’s survival, how do we come up with a model that will let
us explore this relationship?

Even if we set Died to 0 and Survived to 1, this isn’t something we
can transform our way out of - we need something more.

One way to think about the problem - we can treat Survived and
Died as successes and failures arising from a binomial distribution
where the probability of a success is given by a transformation of a
linear model of the predictors.
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Generalized linear models
It turns out that this is a very general way of addressing this type of
problem in regression, and the resulting models are called
generalized linear models (GLMs). Logistic regression is just one
example of this type of model.

All generalized linear models have the following three
characteristics:

1. A probability distribution describing the outcome variable
2. A linear model

I η = β0 + β1X1 + · · · + βnXn

3. A link function that relates the linear model to the parameter of
the outcome distribution

I g(p) = η or p = g−1(η)
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Logistic Regression
Logistic regression is a GLM used to model a binary categorical
variable using numerical and categorical predictors.

We assume a binomial distribution produced the outcome variable
and we therefore want to model p the probability of success for a
given set of predictors.

To finish specifying the Logistic model we just need to establish a
reasonable link function that connects η to p. There are a variety of
options but the most commonly used is the logit function.

Logit function

logit(p) = log
(

p
1 − p

)
, for 0 ≤ p ≤ 1
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Properties of the Logit
The logit function takes a value between 0 and 1 and maps it to a
value between −∞ and ∞.

Inverse logit (logistic) function

g−1(x) =
exp(x)

1 + exp(x)
=

1
1 + exp(−x)

The inverse logit function takes a value between −∞ and ∞ and
maps it to a value between 0 and 1.

This formulation also has some use when it comes to interpreting
the model as logit can be interpreted as the log odds of a success,
more on this later.



The logistic regression model
The three GLM criteria give us:

yi ∼ Binom(pi)

η = β0 + β1x1 + · · · + βnxn

logit(p) = η

From which we arrive at,

pi =
exp(β0 + β1x1,i + · · · + βnxn,i)

1 + exp(β0 + β1x1,i + · · · + βnxn,i)



Example - Donner Party - Model
In R we fit a GLM in the same was as a linear model except using
glm instead of lm and we must also specify the type of GLM to fit
using the family argument.

summary(glm(Status ˜ Age, data=donner, family=binomial))

## Call:

## glm(formula = Status ˜ Age, family = binomial, data = donner)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.81852 0.99937 1.820 0.0688 .

## Age -0.06647 0.03222 -2.063 0.0391 *

##

## Null deviance: 61.827 on 44 degrees of freedom

## Residual deviance: 56.291 on 43 degrees of freedom

## AIC: 60.291

##

## Number of Fisher Scoring iterations: 4



Example - Donner Party - Prediction

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.8185 0.9994 1.82 0.0688

Age -0.0665 0.0322 -2.06 0.0391

Model:

log
(

p
1 − p

)
= 1.8185 − 0.0665 × Age

Odds / Probability of survival for a newborn (Age=0):

log
(

p
1 − p

)
= 1.8185 − 0.0665 × 0

p
1 − p

= exp(1.8185) = 6.16

p = 6.16/7.16 = 0.86
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Example - Donner Party - Prediction (cont.)
Model:

log
(

p
1 − p

)
= 1.8185 − 0.0665 × Age

Odds / Probability of survival for a 25 year old:

log
(

p
1 − p

)
= 1.8185 − 0.0665 × 25

p
1 − p

= exp(0.156) = 1.17

p = 1.17/2.17 = 0.539

Odds / Probability of survival for a 50 year old:

log
(

p
1 − p

)
= 1.8185 − 0.0665 × 0

p
1 − p

= exp(−1.5065) = 0.222

p = 0.222/1.222 = 0.181
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Example - Donner Party - Prediction (cont.)
Model:

log
(

p
1 − p

)
= 1.8185 − 0.0665 × Age

Odds / Probability of survival for a 25 year old:

log
(

p
1 − p

)
= 1.8185 − 0.0665 × 25

p
1 − p

= exp(0.156) = 1.17

p = 1.17/2.17 = 0.539

Odds / Probability of survival for a 50 year old:

log
(

p
1 − p

)
= 1.8185 − 0.0665 × 0

p
1 − p

= exp(−1.5065) = 0.222

p = 0.222/1.222 = 0.181



Example - Donner Party - Prediction (cont.)
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Example - Donner Party - Prediction (cont.)
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Example - Donner Party - Interpretation

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.8185 0.9994 1.82 0.0688

Age -0.0665 0.0322 -2.06 0.0391

Simple interpretation is only possible in terms of log odds and log
odds ratios for intercept and slope terms.

Intercept: The log odds of survival for a party member with an age
of 0. From this we can calculate the odds or probability, but
additional calculations are necessary.

Slope: For a unit increase in age (being 1 year older) how much
will the log odds ratio change, not particularly intuitive. More often
then not we care only about sign and relative magnitude.



Example - Donner Party - Interpretation - Slope

log
(

p1

1 − p1

)
= 1.8185 − 0.0665(x + 1)

= 1.8185 − 0.0665x − 0.0665

log
(

p2

1 − p2

)
= 1.8185 − 0.0665x

log
(

p1

1 − p1

)
− log

(
p2

1 − p2

)
= −0.0665

log
(

p1

1 − p1

/
p2

1 − p2

)
= −0.0665

p1

1 − p1

/
p2

1 − p2
= exp(−0.0665) = 0.94



Example - Donner Party - Age and Gender
summary(glm(Status ˜ Age + Sex, data=donner, family=binomial))

## Call:

## glm(formula = Status ˜ Age + Sex, family = binomial, data = donner)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.63312 1.11018 1.471 0.1413

## Age -0.07820 0.03728 -2.097 0.0359 *

## SexFemale 1.59729 0.75547 2.114 0.0345 *

## ---

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 61.827 on 44 degrees of freedom

## Residual deviance: 51.256 on 42 degrees of freedom

## AIC: 57.256

##

## Number of Fisher Scoring iterations: 4

Gender slope: When the other predictors are held constant this is
the log odds ratio between the given level (Female) and the
reference level (Male).



Example - Donner Party - Gender Models
Just like MLR we can plug in gender to arrive at two status vs age
models for men and women respectively.

General model:

log
(

p1

1 − p1

)
= 1.63312 + −0.07820 × Age + 1.59729 × Sex

Male model:

log
(

p1

1 − p1

)
= 1.63312 + −0.07820 × Age + 1.59729 × 0

= 1.63312 + −0.07820 × Age

Female model:

log
(

p1

1 − p1

)
= 1.63312 + −0.07820 × Age + 1.59729 × 1

= 3.23041 + −0.07820 × Age



Example - Donner Party - Gender Models (cont.)

0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

S
ta

tu
s

Male
Female

Female

Male



Hypothesis test for the whole model
summary(glm(Status ˜ Age + Sex, data=donner, family=binomial))

## Call:

## glm(formula = Status ˜ Age + Sex, family = binomial, data = donner)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.63312 1.11018 1.471 0.1413

## Age -0.07820 0.03728 -2.097 0.0359 *

## SexFemale 1.59729 0.75547 2.114 0.0345 *

## ---

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 61.827 on 44 degrees of freedom

## Residual deviance: 51.256 on 42 degrees of freedom

## AIC: 57.256

##

## Number of Fisher Scoring iterations: 4

Note: The model output does not include any F-statistic, as a general rule there

are not single model hypothesis tests for GLM models.
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Hypothesis tests for a coefficient

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.6331 1.1102 1.47 0.1413

Age -0.0782 0.0373 -2.10 0.0359
SexFemale 1.5973 0.7555 2.11 0.0345

We are however still able to perform inference on individual
coefficients, the basic setup is exactly the same as what we’ve
seen before except we use a Z test.

Note: The only tricky bit, which is way beyond the scope of this course, is how the

standard error is calculated.



Testing for the slope of Age

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.6331 1.1102 1.47 0.1413

Age -0.0782 0.0373 -2.10 0.0359
SexFemale 1.5973 0.7555 2.11 0.0345

H0 : βage = 0

HA : βage , 0

Z =
ˆβage − βage

SEage
=

-0.0782 − 0
0.0373

= -2.10

p-value = P(|Z| > 2.10) = P(Z > 2.10) + P(Z < -2.10)

= 2 × 0.0178 = 0.0359
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Confidence interval for age slope coefficient

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.6331 1.1102 1.47 0.1413

Age -0.0782 0.0373 -2.10 0.0359
SexFemale 1.5973 0.7555 2.11 0.0345

Remember, the interpretation for a slope is the change in log odds
ratio per unit change in the predictor.

Log odds ratio:

CI = PE ±CV × SE = −0.0782± 1.96× 0.0373 = (−0.1513,−0.0051)

Odds ratio:

exp(CI) = (exp−0.1513, exp−0.0051) = (0.85960.9949)
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Confidence interval for age slope coefficient
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Example - Birdkeeping and Lung Cancer
A 1972 - 1981 health survey in The Hague, Netherlands,
discovered an association between keeping pet birds and
increased risk of lung cancer. To investigate birdkeeping as a risk
factor, researchers conducted a case-control study of patients in
1985 at four hospitals in The Hague (population 450,000). They
identified 49 cases of lung cancer among the patients who were
registered with a general practice, who were age 65 or younger
and who had resided in the city since 1965. They also selected 98
controls from a population of residents having the same general
age structure.

From Ramsey, F.L. and Schafer, D.W. (2002). The Statistical Sleuth: A Course in Methods of Data Analysis (2nd ed)



Example - Birdkeeping and Lung Cancer - Data
LC FM SS BK AG YR CD

1 LungCancer Male Low Bird 37.00 19.00 12.00
2 LungCancer Male Low Bird 41.00 22.00 15.00
3 LungCancer Male High NoBird 43.00 19.00 15.00
...

...
...

...
...

...
...

...

147 NoCancer Female Low NoBird 65.00 7.00 2.00

LC Whether subject has lung cancer
FM Sex of subject
SS Socioeconomic status
BK Indicator for birdkeeping
AG Age of subject (years)
YR Years of smoking prior to diagnosis or examination
CD Average rate of smoking (cigarettes per day)

Note: NoCancer is the reference response (0 or failure), LungCancer is the

non-reference response (1 or success) - this matters for interpretation.



Example - Birdkeeping and Lung Cancer - EDA
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Example - Birdkeeping and Lung Cancer - Model
summary(glm(LC ˜ FM + SS + BK + AG + YR + CD, data=bird, family=binomial))

## Call:

## glm(formula = LC ˜ FM + SS + BK + AG + YR + CD, family = binomial,

## data = bird)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -1.93736 1.80425 -1.074 0.282924

## FMFemale 0.56127 0.53116 1.057 0.290653

## SSHigh 0.10545 0.46885 0.225 0.822050

## BKBird 1.36259 0.41128 3.313 0.000923 ***

## AG -0.03976 0.03548 -1.120 0.262503

## YR 0.07287 0.02649 2.751 0.005940 **

## CD 0.02602 0.02552 1.019 0.308055

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 187.14 on 146 degrees of freedom

## Residual deviance: 154.20 on 140 degrees of freedom

## AIC: 168.2

##

## Number of Fisher Scoring iterations: 5



Example - Birdkeeping and Lung Cancer - Interpretation
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.9374 1.8043 -1.07 0.2829
FMFemale 0.5613 0.5312 1.06 0.2907

SSHigh 0.1054 0.4688 0.22 0.8221
BKBird 1.3626 0.4113 3.31 0.0009

AG -0.0398 0.0355 -1.12 0.2625
YR 0.0729 0.0265 2.75 0.0059
CD 0.0260 0.0255 1.02 0.3081

Keeping all other predictors constant then,
I The odds ratio of getting lung cancer for bird keepers vs

non-bird keepers is exp(1.3626) = 3.91.
I The odds ratio of getting lung cancer for an additional year of

smoking is exp(0.0729) = 1.08.
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What do the numbers not mean ...
The most common mistake made when interpreting logistic
regression is to treat an odds ratio as a ratio of probabilities.

Bird keepers are not 4x more likely to develop lung cancer than
non-bird keepers.

This is the difference between relative risk and an odds ratio.

RR =
P(disease|exposed)

P(disease|unexposed)

OR =
P(disease|exposed)/[1 − P(disease|exposed)]

P(disease|unexposed)/[1 − P(disease|unexposed)]



What do the numbers not mean ...
The most common mistake made when interpreting logistic
regression is to treat an odds ratio as a ratio of probabilities.

Bird keepers are not 4x more likely to develop lung cancer than
non-bird keepers.

This is the difference between relative risk and an odds ratio.

RR =
P(disease|exposed)

P(disease|unexposed)

OR =
P(disease|exposed)/[1 − P(disease|exposed)]

P(disease|unexposed)/[1 − P(disease|unexposed)]



What do the numbers not mean ...
The most common mistake made when interpreting logistic
regression is to treat an odds ratio as a ratio of probabilities.

Bird keepers are not 4x more likely to develop lung cancer than
non-bird keepers.

This is the difference between relative risk and an odds ratio.

RR =
P(disease|exposed)

P(disease|unexposed)

OR =
P(disease|exposed)/[1 − P(disease|exposed)]

P(disease|unexposed)/[1 − P(disease|unexposed)]



Back to the birds
What is probability of lung cancer in a bird keeper if we knew that
P(lung cancer|no birds) = 0.05?

OR =
P(lung cancer|birds)/[1 − P(lung cancer|birds)]

P(lung cancer|no birds)/[1 − P(lung cancer|no birds)]

=
P(lung cancer|birds)/[1 − P(lung cancer|birds)]

0.05/[1 − 0.05]
= 3.91

P(lung cancer|birds) =
3.91 × 0.05

0.95

1 + 3.91 × 0.05
0.95

= 0.171

RR = P(lung cancer|birds)/P(lung cancer|no birds) = 0.171/0.05 = 3.41
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OR Curves



(An old) Example - House
If you’ve ever watched the TV show House on Fox, you know that
Dr. House regularly states, “It’s never lupus.”

Lupus is a medical phenomenon where antibodies that are
supposed to attack foreign cells to prevent infections instead see
plasma proteins as foreign bodies, leading to a high risk of blood
clotting. It is believed that 2% of the population suffer from this
disease.

The test for lupus is very accurate if the person actually has lupus,
however is very inaccurate if the person does not. More
specifically, the test is 98% accurate if a person actually has the
disease. The test is 74% accurate if a person does not have the
disease.

Is Dr. House correct even if someone tests positive for Lupus?



(An old) Example - House

Lupus? Result

yes,  0.02

positive,  0.98
0.02*0.98 = 0.0196

negative,  0.02
0.02*0.02 = 0.0004

no,  0.98

positive,  0.26
0.98*0.26 = 0.2548

negative,  0.74
0.98*0.74 = 0.7252

P(Lupus|+) =
P(+, Lupus)

P(+, Lupus) + P(+,No Lupus)

=
0.0196

0.0196 + 0.2548
= 0.0714



Testing for lupus
It turns out that testing for Lupus is actually quite complicated, a
diagnosis usually relies on the outcome of multiple tests, often
including: a complete blood count, an erythrocyte sedimentation
rate, a kidney and liver assessment, a urinalysis, and or an
antinuclear antibody (ANA) test.

It is important to think about what is involved in each of these tests
(e.g. deciding if complete blood count is high or low) and how each
of the individual tests and related decisions plays a role in the
overall decision of diagnosing a patient with lupus.



Testing for lupus
At some level we can view a diagnosis as a binary decision (lupus
or no lupus) that involves the complex integration of various
explanatory variables.

The example does not give us any information about how a
diagnosis is made, but what it does give us is just as important -
the sensitivity and the specificity of the test. These values are
critical for our understanding of what a positive or negative test
result actually means.



Sensitivity and Specificity
Sensitivity - measures a tests ability to identify positive results.

P(Test + | Conditon +) = P(+|lupus) = 0.98

Specificity - measures a tests ability to identify negative results.

P(Test − | Condition −) = P(−|no lupus) = 0.74

It is illustrative to think about the extreme cases - what is the
sensitivity and specificity of a test that always returns a positive
result? What about a test that always returns a negative result?



Sensitivity and Specificity
Sensitivity - measures a tests ability to identify positive results.

P(Test + | Conditon +) = P(+|lupus) = 0.98

Specificity - measures a tests ability to identify negative results.

P(Test − | Condition −) = P(−|no lupus) = 0.74

It is illustrative to think about the extreme cases - what is the
sensitivity and specificity of a test that always returns a positive
result? What about a test that always returns a negative result?



Sensitivity and Specificity (cont.)
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False Positive
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Negative

False Negative
(Type II error)

True Negative



Sensitivity and Specificity (cont.)
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Sensitivity = P(Test + | Condition +)



Sensitivity and Specificity (cont.)
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Sensitivity and Specificity (cont.)
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Sensitivity and Specificity (cont.)
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Sensitivity and Specificity (cont.)

Condition
Positive
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Negative

Test
Positive
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False Negative
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Sensitivity and Specificity (cont.)

Condition
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Positive
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Sensitivity and Specificity (cont.)

Condition
Positive

Condition
Negative

Test
Positive

True Positive
False Positive
(Type 1 error)

Test
Negative

False Negative
(Type II error)

True Negative

Sensitivity = P(Test + | Condition +) = TP/(TP + FN)
Specificity = P(Test − | Condition −) = TN/(FP + TN)

False negative rate (β) = P(Test − | Condition +) = FN/(TP + FN)
False positive rate (α) = P(Test + | Condition −) = FP/(FP + TN)

Sensitivity = 1 − False negative rate = Power

Specificity = 1 − False positive rate



So what?
Clearly it is important to know the Sensitivity and Specificity of test
(and or the false positive and false negative rates). Along with the
incidence of the disease (e.g. P(lupus)) these values are
necessary to calculate important quantities like P(lupus|+).

Additionally, our brief foray into power analysis before the first
midterm should also give you an idea about the trade offs that are
inherent in minimizing false positive and false negative rates
(increasing power required either increasing α or n).

How should we use this information when we are trying to come up
with a decision?



Back to Spam
In lab this week, we examined a data set of emails where we were
interesting in identifying the spam messages. We examined
different logistic regression models to evaluate how different
predictors influenced the probability of a message being spam.

These models can also be used to assign probabilities to incoming
messages (this is equivalent to prediction in the case of SLR /
MLR). However, if we were designing a spam filter this would only
be half of the battle, we would also need to use these probabilities
to make a decision about which emails get flagged as spam.

While not the only possible solution, we will consider a simple
approach where we choose a threshold probability and any email
that exceeds that probability is flagged as spam.
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Picking a threshold
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Lets see what happens if we pick our threshold to be 0.75.
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Consequences of picking a threshold
For our data set picking a threshold of 0.75 gives us the following
results:

FN = 340 TP = 27

TN = 3545 FP = 9

What are the sensitivity and specificity for this particular decision
rule?

Sensitivity = TP/(TP + FN) = 27/(27 + 340) = 0.073

Specificity = TN/(FP + TN) = 3545/(9 + 3545) = 0.997
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Relationship between Sensitivity and Specificity
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Receiver operating characteristic (ROC) curve
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Receiver operating characteristic (ROC) curve (cont.)
Why do we care about ROC curves?

I Shows the trade off in sensitivity and specificity for all possible
thresholds.

I Straight forward to compare performance vs. chance.
I Can use the area under the curve (AUC) as an assessment of

the predictive ability of a model.



Refining the Spam model
g_refined = glm(spam ˜ to_multiple+cc+image+attach+winner

+password+line_breaks+format+re_subj

+urgent_subj+exclaim_mess,

data=email, family=binomial)

summary(g_refined)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.7594 0.1177 -14.94 0.0000

to multipleyes -2.7368 0.3156 -8.67 0.0000
ccyes -0.5358 0.3143 -1.71 0.0882

imageyes -1.8585 0.7701 -2.41 0.0158
attachyes 1.2002 0.2391 5.02 0.0000

winneryes 2.0433 0.3528 5.79 0.0000
passwordyes -1.5618 0.5354 -2.92 0.0035

line breaks -0.0031 0.0005 -6.33 0.0000
formatPlain 1.0130 0.1380 7.34 0.0000
re subjyes -2.9935 0.3778 -7.92 0.0000

urgent subjyes 3.8830 1.0054 3.86 0.0001
exclaim mess 0.0093 0.0016 5.71 0.0000



Comparing models
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Utility Functions
There are many other reasonable quantitative approaches we can
use to decide on what is the “best” threshold.

If you’ve taken an economics course you have probably heard of
the idea of utility functions, we can assign costs and benefits to
each of the possible outcomes and use those to calculate a utility
for each circumstance.



Utility function for our spam filter
To write down a utility function for a spam filter we need to consider
the costs / benefits of each out.

Outcome Utility
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Utility function for our spam filter
To write down a utility function for a spam filter we need to consider
the costs / benefits of each out.

Outcome Utility

True Positive 1

True Negative 1

False Positive -50

False Negative -5

U(p) = TP(p) + TN(p) − 50 × FP(p) − 5 × FN(p)



Utility for the 0.75 threshold
For the email data set picking a threshold of 0.75 gives us the
following results:

FN = 340 TP = 27

TN = 3545 FP = 9

U(p) = TP(p) + TN(p) − 50 × FP(p) − 5 × FN(p)

= 27 + 3545 − 50 × 9 − 5 × 340 = 1422

Not useful by itself, but allows us to compare with other thresholds.
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Utility curve (zoom)
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Maximum Utility

Predicted probability
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