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Linear regression via the Lasso (Tibshirani, 1995)

• Outcome variable yi, for cases i = 1, 2, . . . n, features xij ,

j = 1, 2, . . . p

• Minimize
n
∑

i=1

(yi −
∑

j

xijβj)
2 + λ

p
∑

j=1

|βj |

• Equivalent to minimizing sum of squares with constraint
∑

|βj | ≤ s.

• Similar to ridge regression, which has constraint
∑

j β
2
j ≤ t

• Lasso does variable selection and shrinkage; ridge only shrinks.

• See also “Basis Pursuit” (Chen, Donoho and Saunders, 1998).
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Picture of Lasso and Ridge regression
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Example: Prostate Cancer Data

yi = log (PSA), xij measurements on a man and his prostate
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Emerging themes

• Lasso (ℓ1) penalties have powerful statistical and

computational advantages

• ℓ1 penalties provide a natural to encourage/enforce sparsity

and simplicity in the solution.

• “Bet on sparsity principle” (In the Elements of Statistical

learning). Assume that the underlying truth is sparse and use

an ℓ1 penalty to try to recover it. If you’re right, you will do

well. If you’re wrong— the underlying truth is not sparse—,

then no method can do well. [Bickel, Buhlmann, Candes,

Donoho, Johnstone,Yu ...]

• ℓ1 penalties are convex and the assumed sparsity can lead to

significant computational advantages
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Outline

• New fast algorithm for lasso- Pathwise coordinate descent

• Three examples of applications/generalizations of the lasso:

• Logistic/multinomial for classification. Example later of

classification from microarray data

• Near-isotonic regression - a modern take on an old idea

• The matrix completion problem

• Not covering: sparse multivariate methods- Principal

components, canonical correlation, clustering (Daniela

Witten’s thesis). Google ’Daniela Witten’ − > “Penalized

matrix decomposition”
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Algorithms for the lasso

• Standard convex optimizer

• Least angle regression (LAR) - Efron et al 2004- computes

entire path of solutions. State-of-the-Art until 2008

• Pathwise coordinate descent- new
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Pathwise coordinate descent for the lasso

• Coordinate descent: optimize one parameter (coordinate) at a

time.

• How? suppose we had only one predictor. Problem is to

minimize
∑

i

(yi − xiβ)
2 + λ|β|

• Solution is the soft-thresholded estimate

sign(β̂)(|β̂|− λ)+

where β̂ is usual least squares estimate.

• Idea: with multiple predictors, cycle through each predictor in

turn. We compute residuals ri = yi −
∑

j ̸=k xij β̂k and applying

univariate soft-thresholding, pretending that our data is

(xij , ri).
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Soft-thresholding
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• Turns out that this is coordinate descent for the lasso criterion
∑

i

(yi −
∑

j

xijβj)
2 + λ

∑

|βj |

• like skiing to the bottom of a hill, going north-south, east-west,

north-south, etc. [Show movie]

• Too simple?!
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A brief history of coordinate descent for the lasso

• 1997: Tibshirani’s student Wenjiang Fu at University of

Toronto develops the “shooting algorithm” for the lasso.

Tibshirani doesn’t fully appreciate it

• 2002 Ingrid Daubechies gives a talk at Stanford, describes a

one-at-a-time algorithm for the lasso. Hastie implements it,

makes an error, and Hastie +Tibshirani conclude that the

method doesn’t work

• 2006: Friedman is the external examiner at the PhD oral of

Anita van der Kooij (Leiden) who uses the coordinate descent

idea for the Elastic net. Friedman wonders whether it works for

the lasso. Friedman, Hastie + Tibshirani start working on this

problem. See also Wu and Lange (2008)!
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Pathwise coordinate descent for the lasso

• Start with large value for λ (very sparse model) and slowly

decrease it

• most coordinates that are zero never become non-zero

• coordinate descent code for Lasso is just 73 lines of

Fortran!
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Extensions

• Pathwise coordinate descent can be generalized to many other

models: logistic/multinomial for classification, graphical lasso

for undirected graphs, fused lasso for signals.

• Its speed and simplicity are quite remarkable.

• glmnet R package now available on CRAN
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Logistic regression

• Outcome Y = 0 or 1; Logistic regression model

log(
Pr(Y = 1)

1− Pr(Y = 1)
) = β0 + β1X1 + β2X2 . . .

• Criterion is binomial log-likelihood +absolute value penalty

• Example: sparse data. N = 50, 000, p = 700, 000.

• State-of-the-art interior point algorithm (Stephen Boyd,

Stanford), exploiting sparsity of features : 3.5 hours for 100

values along path
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Logistic regression

• Outcome Y = 0 or 1; Logistic regression model

log(
Pr(Y = 1)

1− Pr(Y = 1)
) = β0 + β1X1 + β2X2 . . .

• Criterion is binomial log-likelihood +absolute value penalty

• Example: sparse data. N = 50, 000, p = 700, 000.

• State-of-the-art interior point algorithm (Stephen Boyd,

Stanford), exploiting sparsity of features : 3.5 hours for 100

values along path

• Pathwise coordinate descent: 1 minute
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Multiclass classification

Microarray classification: 16,000 genes, 144 training samples 54 test

samples, 14 cancer classes. Multinomial regression model.

Methods CV errors Test errors # of

out of 144 out of 54 genes used

1. Nearest shrunken centroids 35 (5) 17 6520

2. L2-penalized discriminant analysis 25 (4.1) 12 16063

3. Support vector classifier 26 (4.2) 14 16063

4. Lasso regression (one vs all) 30.7 (1.8) 12.5 1429

5. K-nearest neighbors 41 (4.6) 26 16063

6. L2-penalized multinomial 26 (4.2) 15 16063

7. Lasso-penalized multinomial 17 (2.8) 13 269

8. Elastic-net penalized multinomial 22 (3.7) 11.8 384
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Near Isotonic regression

Ryan Tibshirani, Holger Hoefling, Rob Tibshirani (2010)

• generalization of isotonic regression: data sequence

y1, y2, . . . yn.

minimize
∑

(yi − ŷi)
2 subject to ŷ1 ≤ ŷ2 . . .

Solved by Pool Adjacent Violators algorithm.

• Near-isotonic regression:

βλ = argmin β∈Rn

1

2

n
∑

i=1

(yi − βi)
2 + λ

n−1
∑

i=1

(βi − βi+1)+,

with x+ indicating the positive part, x+ = x · 1(x > 0).
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Near-isotonic regression- continued

• Convex problem. Solution path β̂i = yi at λ = 0 and

culminates in usual isotonic regression as λ→∞. Along the

way gives near monotone approximations.
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Numerical approach

How about using coordinate descent?

• Surprise! Although criterion is convex, it is not differentiable,

and coordinate descent can get stuck in the “cusps”
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No improvement No improvement

Improvement
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When does coordinate descent work?

Paul Tseng (1988), (2001)

If

f(β1 . . .βp) = g(β1 . . .βp) +
∑

hj(βj)

where g(·) is convex and differentiable, and hj(·) is convex, then

coordinate descent converges to a minimizer of f .

Non-differential part of loss function must be separable



27

Solution: devise a path algorithm

• Simple algorithm that computes the entire path of solutions, a

modified version of the well-known pool adjacent violators

• Analogous to LARS algorithm for lasso in regression

• Bonus: we show that the degrees of freedom is the number of

“plateaus” in the solution. Using results from Ryan

Tibshirani’s PhD work with Jonathan Taylor
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Toy example

λ = 0 λ = 0.25

λ = 0.7 λ = 0.77
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Global warming data



30

1850 1900 1950 2000

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

Year

Te
m

pe
ra

tu
re

 a
no

m
al

ie
s

lam= 0 , ss= 0 , viol= 5.6

1850 1900 1950 2000

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

Year

Te
m

pe
ra

tu
re

 a
no

m
al

ie
s

lam= 0.3 , ss= 0.68 , viol= 0.5

1850 1900 1950 2000

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

Year

Te
m

pe
ra

tu
re

 a
no

m
al

ie
s

lam= 0.6 , ss= 0.88 , viol= 0.3

1850 1900 1950 2000

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

Year

Te
m

pe
ra

tu
re

 a
no

m
al

ie
s

lam= 1.8 , ss= 1.39 , viol= 0



31

The matrix completion problem

• Data Xm×n, for which only a relatively small number of entries

are observed. The problem is to “complete” or impute the

matrix based on the observed entries. Eg the Netflix database

(see next slide).

• For a matrix Xm×n let Ω ⊂ {1, . . . ,m}× {1, . . . , n} denote the

indices of observed entries. Consider the following optimization

problem:

minimize rank(Z)

subject to Zij = Xij , ∀(i, j) ∈ Ω (1)

Not convex!
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• The following seemingly small modification to (1)

minimize ∥Z∥∗

subject to Zij = Xij , ∀(i, j) ∈ Ω (2)

makes the problem convex [Faz02]. Here ∥Z∥∗ is the nuclear

norm, or the sum of the singular values of Z.

• This criterion is used by [CT09, CCS08, CR08]. Fascinating

work! See figure.

• But this criterion requires the training error to be zero. This is

too harsh and can overfit!

• Instead we use the criterion:

minimize ∥Z∥∗

subject to
∑

(i,j)∈Ω

(Zij −Xij)
2 ≤ δ (3)
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Nuclear norm is like L1 norm for matrices
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Idea of Algorithm

1. impute the missing data with some initial values

2. compute the SVD of the current matrix, and soft-threshold the

singular values

3. reconstruct the SVD and hence obtain new imputations for

missing values

4. repeat steps 2,3 until convergence
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Notation

• Define a matrix PΩ(X) (with dimension n×m)

PΩ(X) (i, j) =

⎧

⎨

⎩

Xij if (i, j) ∈ Ω

0 if (i, j) /∈ Ω,
(4)

which is a projection of the matrix X onto the observed entries.

• Let

Sλ(W ) ≡ UDλV
′ with Dλ = diag [(d1 − λ)+, . . . , (dr − λ)+] , (5)

where UDV ′ is the singular value decomposition of W ,
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Algorithm

1. Initialize Zold = 0 and create a decreasing grid Λ of values

λ1 > . . . > λK .

2. For every fixed λ = λ1, λ2, . . . ∈ Λ iterate till convergence:

Compute Znew ← Sλ(PΩ(X) + P⊥
Ω (Zold))

3. Output the sequence of solutions Ẑλ1
, . . . , ẐλK

.

It X is sparse, then at each step the non-sparse matrix has the

structure:

X = XSP (Sparse) + XLR (Low Rank) (6)

Can apply Lanczos methods to compute the SVD efficiently.
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Properties of Algorithm

We show this iterative algorithm converges to the solution to

minimize
Z

1

2
∥PΩ(X)− PΩ(Z)∥2F + λ∥Z∥∗. (7)

which is equivalent to the bound version (3),
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Timings

(m,n) |Ω| true rank SNR effective rank time(s)

(3× 104, 104) 104 15 1 (13, 47, 80) (41.9, 124.7, 305.8)

(105, 105) 104 15 10 (5, 14, 32, 62) (37, 74.5, 199.8, 653)

(105, 105) 105 15 10 (18, 80) (202, 1840)

(5× 105, 5× 105) 104 15 10 11 628.14

(5× 105, 5× 105) 105 15 1 (3, 11, 52) (341.9, 823.4, 4810.75)

(106, 106) 105 15 1 80 8906



40

Accuracy

50% missing entries with SNR=1, true rank =10
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Discussion

• lasso penalties are useful for fitting a wide variety of models to

large datasets; pathwise coordinate descent enables to fit these

models to large datasets for the first time

• In CRAN: coordinate descent in R: glmnet- linear regression,

logistic, multinomial, Cox model, Poisson

• Also: LARS, nearIso, cghFLasso, glasso

• Matlab software for glm.net and matrix completion

http://www-stat.stanford.edu/∼ tibs/glmnet-matlab/

http://www-stat.stanford.edu/∼rahulm/SoftShrink
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Ongoing work in lasso/sparsity

• grouped lasso (Yuan and Lin) and many variations (Peng,

Zhu...Wang “RemMap”)

• multivariate- principal components, canonical correlation,

clustering (Witten and others)

• matrix-variate normal (Genevera Allen)

• graphical models, graphical lasso (Yuan+Lin, Friedman,

Hastie+Tibs, Peng, Wang et al- “SPACE”)

• Compressed sensing (Candes and co-authors)

• “Strong rules” (Tibs et al 2010) provide a 5-80 fold speedup in

computation, with no loss in accuracy
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Some challenges

• develop tools and theory that allow these methods to be used

in statistical practice: standard errors, p-values and confidence

intervals that account for the adaptive nature of the estimation.

• while it’s fun to develop these methods, as statisticians, our

ultimate goal is to provide better answers to scientific questions
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