
Motivation for nonlinear models

The key properties of a linear model are that

E (Y |X ) = β′X and var(Y |X ) ∝ I .

In some cases where these conditions are not met, we can
transform Y so that the linear model assumptions are
approximately satisfied.

However it is often difficult to find a transformation that
simultaneously linearizes the mean and gives constant variance.

If Y lies in a restricted domain (e.g. Y = 0, 1), parameterizing
E (Y |X ) as a linear function of X violates the domain restriction.

Generalized linear models (GLM’s) are a class of nonlinear
regression models that can be used in certain cases where linear
models are not appropriate.
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Logistic regression

Logistic regression is a specific type of GLM. We will develop
logistic regression from first principals before discussing GLM’s in
general.

Logistic regression is used for binary outcome data, where Y = 0
or Y = 1. It is defined by the probability mass function

P(Y = 1|X = x) =
exp(β′x)

1 + exp(β′x)
=

1

1 + exp(−β′x)
,

which implies that

P(Y = 0|X = x) = 1− P(Y = 1|X = x) =
1

1 + exp(β′x)
,

where x0 ≡ 1 so β0 is the intercept.
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Logistic regression

This plot shows P(Y = 1|X ) and P(Y = 0|X ), plotted as
functions of β′X :
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Logistic regression

The logit function

logit(x) = log(x/(1− x))

maps the unit interval onto the real line. The inverse logit
function, or expit function

expit(x) = logit−1(x) =
exp(x)

1 + exp(x)

maps the real line onto the unit interval.

In logistic regression, the logit function is used to map the linear
predictor β′X to a probability.
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Logistic regression

The linear predictor in logistic regression is the conditional log
odds:

log

[
P(Y = 1|X )

P(Y = 0|X )

]
= β′X .

Thus one way to interpret a logistic regression model is that a one
unit increase in Xj results in a change of βj in the conditional log
odds.

Or, a one unit increase in Xj results in a multiplicative change of
exp(βj) in the conditional odds.
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Latent variable model for logistic regression

It may make sense to view the binary outcome Y as being a
dichotomization of a latent continuous outcome Yc ,

Y = I(Yc ≥ 0).

Suppose Yc |X follows a logistic distribution, with CDF

F (Yc |X ) =
exp(Yc − β′X )

1 + exp(Yc − β′X )
.

In this case, Y |X follows the logistic regression model:

P(Y = 1|X ) = P(Yc ≥ 0|X ) = 1− exp(0− β′X )

1 + exp(0− β′X )
=

exp(β′X )

1 + exp(β′X )
.
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Mean/variance relationship for logistic regression

Since the mean and variance of a Bernoulli trial are linked, the
mean structure

E (Y |X ) = P(Y = 1|X ) =
exp(β′X )

1 + exp(β′X )

also determines the variances

var(Y |X ) = P(Y = 1|X )·P(Y = 0|X ) =
1

2 + exp(β′X ) + exp(−β′X )
.

Sicne the variance depends on X , logistic regression models are
always heteroscedastic.
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Logistic regression and case-control studies

Suppose we sample people based on their disease status D (D = 1
is a case, D = 0 is a control).

We are interested in a binary marker M ∈ {0, 1} that may predict
a person’s disease status.

The prospective log odds

log

[
P(D = 1|M = m)

P(D = 0|M = m)

]
= log

[
P(M = m|D = 1)P(D = 1)

P(M = m|D = 0)P(D = 0)

]

measures how informative the marker is for the disease.
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Logistic regression and case-control studies

Suppose we model M|D using logistic regression, so

P(M = 1|D) =
exp(α + βD)

1 + exp(α + βD)
P(M = 0|D) =

1

1 + exp(α + βD)
.

The prospective log odds can be written

log

[
exp(M · (α + β))/(1 + exp(α + β))

exp(M · α)/(1 + exp(α))
· P(D = 1)

P(D = 0)

]
which equals

βM + log

[
1 + exp(α)

1 + exp(α + β)
· P(D = 1)

P(D = 0)

]
.
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Logistic regression and case-control studies

If we had prospective data and used logistic regression to model the
prosepctive relationship D|M, the log odds would have the form

θ + βM.

Therefore we have shown that the coefficient β when we use
logistic regression to regress M on D using case-control data is the
same coefficient (in the population sense) as we would obtain from
regressing D on M in a prospective study.

Note that the intercepts are not the same in general.
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Estimation and inference for logistic regression

Assuming independent cases, the log-likelihood for logistic
regression is

L(β|Y ,X ) = log
∏
i

exp(Yi · β′Xi )

1 + exp(β′Xi )

=
∑

i :Yi=1

β′Xi −
∑

i

log(1 + exp(β′Xi )).

This likelihood is for the conditional distribution of Y given X .

As in linear regression, we do not model the marginal distribution
of X .
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Estimation and inference for logistic regression

Logistic regression models are usually fit using maximum likelihood
estimation.

This means that the parametric likelihood above is maximized as a
function of β.

The gradient of the log-likelihood function (the score function) is

G (β|Y ,X ) =
∂

∂β
L(β|Y ,X ) =

∑
i :Yi=1

Xi −
∑

i

exp(β′Xi )

1 + exp(β′Xi )
Xi .
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Estimation and inference for logistic regression

The Hessian of the log-likelihood is

H(β|Y ,X ) =
∂2

∂ββ′
L(β|Y ,X ) = −

∑
i

exp(β′Xi )

(1 + exp(β′Xi ))2
XiX

′
i .

The Hessian is strictly negative definite as long as the design
matrix has independent columns. Therefore L(β|Y ,X ) is a
concave function of β, so has a unique maximizer, and hence the
MLE is unique.
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Estimation and inference for logistic regression

From general theory about the MLE, the Fisher information

I (β) = −[EH(β|Y ,X )|X ]−1

is the asymptotic sampling covariance matrix of the MLE β̂. Since
H(β|Y ,X ) does not depend on Y , I (β) = −H(β|Y ,X )−1.

Since β̂ is an MLE for a regular problem, it is consistent,
asymptotically unbiased, and asymptotically normal if the model is
correctly specified.
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General development of GLM’s

The modeling assumptions for a GLM are

I The Yi are conditionally independent given X .

I The probability mass function or density can be written

log p(Yi |θi , φ,Xi ) = wi (Yiθi − γ(θi ))/φ+ τ(Yi , φ/wi ),

where wi is a known weight, θi = g(β′Xi ) for an unknown
vector of regression slopes β, g(·) and γ(·) are smooth
functions, φ is the “scale parameter” (which may be either
known or unknown), and τ(·) is a known function.
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General development of GLM’s

The log-likelihood function is

L(β, φ|Y ,X ) =
∑

i

wi (Yiθi − γ(θi ))/φ+ τ(Yi , φ/wi ).

The score function with respect to θi is

wi (Yi − γ′(θi ))/φ.
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General development of GLM’s
Next we need a fundamental fact about score functions.

Let fθ(Y ) be a density in Y with parameter θ. The score function
is

∂

∂θ
log fθ(Y ) = fθ(Y )−1 ∂

∂θ
fθ(Y ).

The expected value of the score function is

E
∂

∂θ
log fθ(Y ) =

∫
fθ(Y )−1

(
∂

∂θ
fθ(Y )

)
fθ(Y )dY

=
∂

∂θ

∫
fθ(Y )dY

= 0.

Thus the score function has expected value 0 when θ is at its true
value.
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General development of GLM’s

Since the expected value of the score function is zero, we can
conclude that

E (wi (Yi − γ′(θi ))/φ|X ) = 0,

so

E (Yi |X ) = γ′(θi ) = γ′(g(β′Xi )).

Note that this relationship does not depend on φ or τ .
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General development of GLM’s

Using a similar approach, we can relate the variance to wi , φ, and
γ′. By direct calculation,

∂2L(θi |Yi ,Xi , φ)/∂θ2
i = −wiγ

′′(θi )/φ.

Returning to the general density fθ(Y ), we can write the Hessian as

∂

∂θθ′
log fθ(Y ) = fθ(Y )−2

(
fθ(Y )

∂2

∂θθ′
fθ(Y )− ∂fθ(Y )/∂θ · ∂fθ(Y )/∂θ′

)
.
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General development of GLM’s

The expected value of the Hessian is

E
∂

∂θθ′
log fθ(Y ) =

∫
∂

∂θθ′
fθ(Y ) · fθ(Y )dY

=
∂

∂θθ′

∫
fθ(Y )dY −

∫ (
∂fθ(Y )/∂θ

fθ(Y )
· ∂fθ(Y )/∂θ′

fθ(Y )

)
fθ(Y )dY

= −cov
(
∂

∂θ
log fθ(Y )|X

)
.

Therefore

wiγ
′′(θi )/φ = var

(
wi (Yi − γ′(θi ))/φ|X

)
so var(Yi |X ) = φγ′′(θi )/wi .
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Examples of GLM’s

Gaussian linear model: The density of Y |X can be written

log p(Yi |Xi ) = − log(2πσ2)/2− 1

2σ2
(Yi − β′Xi )

2

= − log(2πσ2)/2− Y 2
i /2σ2 + (Yiβ

′Xi − (β′Xi )
2/2)/σ2.

This can be put into GLM form by setting g(x) = x , γ(x) = x2/2,
wi = 1, φ = σ2, and τ(Yi , φ) = − log(2πφ)/2− Y 2

i /2φ.
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Examples of GLM’s

Logistic regression: The mass function of Y |X can be written

log p(Yi |Xi ) = Yi log(pi ) + (1− Yi ) log(1− pi )

= Yi log(pi/(1− pi )) + log(1− pi ),

where

pi = logit−1(β′Xi ) =
exp(β′Xi )

1 + exp(β′Xi )
.

Since log(pi/(1− pi )) = β′X , this can be put into GLM form by
setting g(x) = x , γ(x) = − log(1− logit−1(x)) = log(1 + exp(x)),
τ(Yi , φ) ≡ 0, w = 1, and φ = 1.
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Examples of GLM’s

Poisson regression: In Poisson regression, the distribution of Y |X
follows a Poisson distribution, with the mean response related to
the covariates via

log E (Y |X ) = β′X .

It follows that log var(Y |X ) = β′X as well. The mass function can
be written

log p(Yi |Xi ) = Yiβ
′Xi − exp(β′Xi )− log(Yi !),

so in GLM form, g(x) = x , γ(x) = exp(x), w = 1,
τ(Yi ) = − log(Yi !), and φ = 1.
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Examples of GLM’s

Negative binomial regression: In negative binomial regression,
the probability mass function for the dependent variable Y is

P(Yi = y |X ) =
Γ(y + 1/α)

Γ(y + 1)Γ(1/α)

(
1

1 + αµi

)1/α( αµi

1 + αµi

)y

.

The mean of this distribution is µi and the variance is µi + αµ2
i . If

α = 0 we get the same mean/variance relationship as the Poisson
model. As α increases, we get increasingly more overdispersion.
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Examples of GLM’s

Negative binomial regression (continued):

The log-likelihood (dropping terms that do not involve µ) is

log P(Yi = y |X ) = y log(
αµi

1 + αµi
)− α−1 log(1 + αµi )

Suppose we model the mean as µi = exp(β′Xi ). Then in the
standard GLM notation, we have

θi = log

(
α exp(β′Xi )

1 + α exp(β′Xi )

)
,

so g(x) = log(α) + x − log(1 + α exp(x)), and
γ(x) = −α−1 log(1− exp(x)).
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Link functions

In a GLM, the link function maps the mean to the linear predictor
ηi = X ′i β. Since

E [Yi |X ] = γ′(g(η)),

it follows that the link function is the inverse of γ′ ◦ g .

For example, in the case of logistic regression,

γ′(g(η)) = exp(η)/(1 + exp(η)),

which is the expit function. The inverse of this function is the logit
function log(p/(1−p)), so the logit function is the link in this case.
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Link functions

When g(x) = x , the resulting link function is called the canonical
link function.

In the examples above, linear regression, logistic regression, and
Poisson regression all used the canonical link function, but
negative binomial regression did not.

The canonical link function for negative binomial regression is 1/x ,
but this does not respect the domain and is harder to interpret
than the usual log link.

Another setting where non-canonical links arise is the use of the
log link function for logistic regression. In this case, the coefficients
β are related to the log relative risk rather than to the log odds.
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Overdispersion

Under the Poisson model, var[Y |X ] = E [Y |X ]. A Poisson model
results from using the Poisson GLM with the scale parameter φ
fixed at 1.

The quasi-Poisson model is the Poisson model with a scale
parameter that may be any non-negative value. Under the
quasi-Poisson model, var[Y |X ] ∝ E [Y |X ].

The negative binomial GLM allows the variance to be
non-proportional to the mean.

Any situation in which var[Y |X ] > E [Y |X ] is called
overdispersion. Overdispersion is often seen in practice.

One mechanism that may give rise to overdispersion is
heterogeneity. Suppose we have a hierarchical model in which λ
follows a Γ distribution, and Y |λ is Poisson with mean parameter
λ. Then marginally, Y is negative binomial.
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Model comparison for GLM’s

If φ is held fixed across models, then twice the log-likelihood ratio
between two nested models θ̂(1) and θ̂(2) is

L ≡ 2
∑

i

(Yi θ̂
(1)
i − γ(θ̂

(1)
i ))/φ− 2

∑
i

(Yi θ̂
(2)
i − γ(θ̂

(2)
i ))/φ,

where θ̂(2) is nested within θ̂(1), so L ≥ 0. This is called the scaled
deviance.

The statistic D = φL, which does not depend explicitly on φ, is
called the deviance.
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Model comparison for GLM’s

Suppose that θ̂(1) is the saturated model, in which θi = Yi . If the
GLM is Gaussian and g(x) ≡ x , as discussed above, the deviance is

D = 2
∑

i

(Y 2
i − Y 2

i /2)− 2
∑

i

(Yi θ̂
(2)
i − θ̂

(2) 2
i /2)

=
∑

i

Y 2
i − 2Yi θ̂

(2)
i + θ̂

(2) 2
i

=
∑

i

(Yi − θ̂
(2)
i )2.
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Model comparison for GLM’s

Thus in the Gaussian case, the deviance is the residual sum of
squares for the smaller model (θ̂(2)).

In the Gaussian case, D/φ = L ∼ χ2
n−p−1.

When φ is unknown, we can turn this around to produce an
estimate of the scale parameter

φ̂ =
D

n − p − 1
.

This is an unbiased estimate in the Gaussian case, but is useful for
any GLM.
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Model comparison for GLM’s
Now suppose we want to compare two nested generalized linear
models with deviances D1 < D2. Let p1 > p2 be the number of
covariates in each model. The likelihood ratio test statistic is

L2 − L1 =
D2 − D1

φ

which asymptotically has a χ2
p1−p2

distribution.

If φ is unknown, we can estimate it as described above (using the
larger of the two models).

The “plug-in” likelihood ratio statistic (D2 − D1)/φ̂ is still
asymptotically χ2

p1−p2
, as long as φ̂ is consistent.

The finite sample distribution may be better approximated using

D2 − D1

φ̂(p1 − p2)
≈ Fp1−p2,n−p1 ,

which is exact in the Gaussian case.
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Model comparison for GLM’s

We can compare any two fitted GLM’s using model selection
statistics like AIC or BIC.

AIC favors models having small values of Lopt − df, where Lopt is
the maximized log-likelihood, and df is the degrees of freedom.
Equivalently, the AIC can be expressed

−D/2φ̂− p − 1.

The same φ̂ value should be used for all models being compared
(i.e. by using the one from the largest model).
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