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Introduction

* The human cytomegalovirus (CMV) is a potentially life-threatening disease
for people with suppressed or deficient immune system..

* To develop strategies for combating the virus, scientists study the way in
which the virus replicates.

* In particular, they are in search of a special place on the virus’ DNA that
contains instructions for its reproduction: origin of replication.
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DNA

* A virus’ DNA contains all of the information necessary for it to grow,
survive and replicate.

* DNA can be though of as a long, coded message made from a four-letter
alphabet: A, C, G, T.

* DNA sequences contain many patterns, as the alphabet is small.

* Some of these patterns may flag important sites on the DNA, such as the
origin of replication.

* Complementary palindrome is one type of pattern. In DNA, the letter A is
complementary to T, and G is complementary to C, and complementary
palindrome is a sequence
of letters that reads in reverse as the complement of the forward sequence :

GGGCATGCCC
.
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Search

* The origin of replication for two viruses from the same family as CMV, the
herpes family, are marked by complimentary palindromes. One of them,
Herpes simplex, is marked by a long palindrome of 144 letters.The other,
the Epstein-Barr virus, has several short palindromes and close repeats
clustered at the origin of replication.

* For the CMV, the longest palindrome is 18 basepairs, and altogether,
contains 296 palindromes between 10 and 18 base pairs long. Biologist
conjectured that clusters of palindromes in CMV may serve the same role
as the single long palindrome in Herpes simplex, or the cluster of
palindromes and short repeats in the Epstein-Barr virus’ DNA.

* To find the origin of replication, DNA is cut into segments and each
segment is tested to determine whether it can replicate. If it does not
replicate, then the origin of replication must not be contained in the
segment.
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Search

* This process can be very time consuming and expensive without leads on
where to begin the search. A statistical investigation of the DNA to identify
unusually dense clusters of palindromes can help narrow the search and
potentially reduce the amount of testing needed to find the origin of
replication.

* In this lab we will search for unusual clusters of complementary
palindromes.
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Description

* DNA sequence of CMV was published in 1990 (Chee et al.)

* Leung et al. (1991) implemented search algorithms to screen the sequence
for many types of patterns

* Altogether, 296 palindromes were found that were at least 10 letters long.

* The longest ones found were 18 letters long and occurred in locations
14719, 75812, 90763 and 173893 along the sequence.

* Palindromes shorter than 10 letters were ignored.

* The CMV DNA is 229,354 letters long.
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* One way to begin to group the data of the 296 palindromes found is to
segment the DNA chain into intervals of base pairs and count the number
of palindromes found in each interval.

** From these histograms, it is fairly easy to see that no matter the length of the
interval, there appear to be clusters of palindromes in at least two locations:
around the 93,000th and 195,000th pairs of DNA. This is enough to formulate a
hypothesis which claims that the clusters at theses two locations are exceptions
within the typical structure of the DNA chain, i.e. that the clusters are not due to
chance.

** By comparing histograms of the actual palindromes to histograms based on
randomly generated numbers we can see that the random sets of numbers
present no pattern of clusters at any given point, no matter what size intervals
we use.
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* We can also see that the observed palindromes present higher spikes of
number of palindromes per intervals. In addition, there does not appear
to be any consistent pattern of clusters of hits with the random numbers.

** We can see that no matter the length of the intervals, there always seem to be
one or two outliers of intervals containing a higher number of palindromes.

** We can observe that the intervals of the random hits do not display such
outliers. Therefore it would seem logical to deduce that the outliers on the DNA
are atypical and worth examining for the replication code.
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* The Investigations in the chapter suggest looking at the spaces between
the palindromes.

** A scatterplot of the spaces between the palindromes doesn’t seem to show any
patterns that may be useful.

** Perhaps there is another way of analyzing the spaces that is more useful.
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DNA

1944 Avery, MacLeod and McCarty showed that DNA was the carrier of hered-
itary information.

- 1953, Franklin, Watson and Crick found that DNA has a double helical
structure composed of two long chains of nucleotides.

- A single nucleotide has three parts: a sugar, a phosphate and a base.

- All the sugars in the DNA are deoxyribose.

- The basis come in four types: adenine, cytosine , guanine and thymine, or

A,C,G,T

for short.

- As the basis vary from one nucleotide to another, they give the appearance
of a long, coded message.
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DNA(cont.)

The two strange of the nucleotides are connected at the bases, forming com-
plementary pairs. The bases on one strand are paired to the other strand: A
to T, C to G, G to C and T to A

.

- The CMV DNA molecule contains 229,354 complementary pairs of letters or
base pairs.

- In comparison, human DNA has more than 3 billions base pairs.
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Viruses

Viruses are very simple structures with two main parts: a DNA molecule
wrapped within a protein shell called a capsid.

- The DNA stores all the necessary information for controlling life processes,
including its own replication

- The DNA for viruses typically ranges up to several hundred thousand base
pairs in length.

- For example, E coli. replication begins when a ”snipping” enzyme cuts the
DNA strand apart at a small region called the origin. In the neighborhood are
plenty of free nucleotides. When a free nucleotide meets its complementary
base on the DNA, it sticks, while the ”wrong” nucleotides bounce away.

- As the snipping enzyme opens the DNA further, more nucleotides are
added, and a clipping enzyme puts them together.
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Human Cytomegalovirus

CMV is a member of the herpes virus family.

Incidence of CMV varies geographically from 30% to 80%. Typically 10%-15%
of children are infected with CMV before the age of 5. The infection then
levels off until young adulthood, when it again increases and presents
symptoms often similar to mononucleosis.

Once infected, CMV lays dormant. It only become harmful when the virus
enters a productive cycle in which it quickly replicated tens of thousands of
copies.

In this cycle it poses a major risk for people in immune-depressed states:
transplant patients, AIDS patients, etc.

Locating the origin of replication for CMV may help virologist find an
effective vaccine against the virus.
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How do we find clusters of palindromes? How do we determine whether a
cluster is just a chance occurrence or a potential replication site?

* [Random scatter] To begin, pursue the point of view that structure in the data is
indicated by departures from a uniform scatter of palindromes across the DNA.

** Of course, a random uniform scatter, does not mean that the
palindromes will be equally spaced as milestones on a freeway. There
will be some gaps on the DNA where no palindromes occur, and there
will be some clumping together of palindromes.

To look for structure examine the locations of the palindromes, the spacing between
palindromes, and the counts of palindromes in non overlapping regions of the DNA.
One starting place might be to see first how random scatter looks by using a computer
to simulate it.

** A computer can simulate 296 palindrome sites chosen at random along a
DNA sequence of 229,354 bases using a pseudo random number
generator. When this is done several times,by making seller sets of
simulated palindrome locations, then the real data can be compared to
the simulated data.

* [Locations and spacings] Use graphical methods to examine the spacings between
consecutive palindromes and sum of consecutive pairs, triplets, etc, spacings.
Compare what you find to what would you expect to find in a random scatter. Also, use
graphical methods to compare locations of the palindromes.
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How do we find clusters of palindromes? How do we determine whether a
cluster is just a chance occurrence or a potential replication site?

* [Counts] Use graphical methods and more formal statistical tests to examine the
counts of palindromes in various regions of the DNA. Split the DNA into nonoverlaping
regions of equal length to compare the number of palindromes in an interval to the
number of that would you expect from uniform random scatter. The counts for shorter
regions will be more variable than those for longer regions. Also consider classifying
the regions according to their number of counts.

* [The biggest cluster] Does the interval with the greatest number of palindromes
indicate a potential origin of replication?Be careful in making your intervals, for any
small, but significant ,deviations from random scatter, such as a tight cluster of a few
palindromes, could easily go undetected if the regions examined are too large. Also, if
the regions are too small, a cluster of palindromes may be split between adjacent
intervals and not appear as a high-count interval.

How would you advise biologist who is a bout to start experimentally
searching for the origin of replication? Write your recommendations
in the form of a report that a team members including biologist will
read.
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Goals

Understand a random model that describes the behavior of ”counts” of the
number of palindromes and for a ”uniform” aka random scatter of palin-
dromes.

* To determine the estimation procedure in such a model.
* To understand how to find statistical discrepancies between a model with
clusters and model without clusters.
* Is a model a good model
* Can we formulate spacings as well as counts in the model
* What is a hypothesis tests
* How is uniform distribution related to the problem
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The Homogeneous Poisson Process is a model for random phenomena such
as arrival times of telephone calls at an exchange, the decay times of radioac-
tive particles, and the position of stars in parts of the sky.

The process arises naturally from the notion of points haphazardly distributed
on a line with no obvious regularity.

The characteristic features of the process are

- The underlying rate λ at which points, called hits, occur and is such that id
doesn’t change with location (homogeneity).

- The number of points falling in separate regions are independent.

- No two points can land in exactly the same place.

These three properties are enough to derive the formal probability model
for The Homogeneous Poisson Process.
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The Homogeneous Poisson Process

The poison process is a good reference model for making comparisons be-
cause it is a natural model for uniform random scatter.

* The strand of the DNA can be thought of as a line, and the location of a
palindrome can be thought of as a point on the line

* The uniform random scatter model says: palindromes are scattered
randomly and uniformly across the DNA

* The number of palindromes in any small piece of DNA is independent of
the number of palindromes in another, non overlapping piece

* The chance that one tiny piece of DNA ha palindrome in it is the same for
all tiny pieces of the DNA.
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Counts and the Poisson Distribution

Counts of the number of points in different regions follow Poisson distribution
with rate λ.

P (k points in a unit interval ) = λk

k! e
−λ, for k = 0, 1, · · · ...

* Te rate λ is the rate of hits per unit.
* E of Poisson random variable is λ, hence it stands for the expected
number of hits per unit interval

* In most examples rate λ is unknown. A good estimate is
the empirical average number of hits per unit interval

* This method of estimation is called
method of moments.

* Another method of estimation is called
maximum likelihood method.
For poisson distribution they result in the same estimator. 18



Goodness of Fit for Probability Distributions

We often hypothesize that the observations are realizations of independent
random variables from a specified distribution such is Poisson distribution.
We do not believe that data follow this distribution exactly, but rather that
this distribution isa good proxy for the randomness we observe in the data.

* If Poisson distribution fits the data well then it could be useful in
searching for the unusual clusters.

We would want to use the The Homogeneous Poisson Process as a reference model against which
to seek an excess of palindromes. This only makes sense if the model more or less fits the data.
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Basic principle

A technique foe accessing how well the reference model fits to the data is to
apply the chi-square goodness of fit test

* Divide the CMV DNA into 57 non overlapping regions of length 4000 bases,
and tally the number of complementary palindromes in each segment

*
* There is nothing special about the number 4000. It is chosen to make the
number of observations in the table reasonable.

* The distribution of these counts appears in the PICS
* The last column in the table above contains the expected number of
segments continuing the specified number of palindromes as computed
from the hypothesized Poisson distribution.
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Basic principle (cont.)

*

57P (0, 1 or 2 palindromes in an interval of length 4000) = 57e−λ[1+λ+λ2/2]

* The rate λ is not known. There are 294 palindromes in the 57 intervals of
length 4000, so the sample rate is 5.16 per 4000 base pairs.

* Plugging this estimate into calculations above yields 0.112 for the change
that an interval of 4000 base pairs has 0, 1, or 2 palindromes. Hence the
approximate expected number is

57× 0.112 = 6.4.

This is approximate as we are using an estimated value of λ.
21



Chi-Squared Test Statistics

To compare the observed data to the expected, we compute the following
statistic:

(7− 6.4)2

6.4 +
(8− 7.5)2

7.5 +
(10− 9.7)2

9.7 +
(9− 10)2

10

+
(8− 8.6)2

8.6 +
(5− 6.3)2

6.3 +
(4− 4.1)2

4.1 +
(6− 4.5)2

4.5 = 1.0

* If the random scatter model is true, then the test statistic computed here
has an approximate chi-square distribution (also written χ2) with six
degrees of freedom.

* The size of the actual test statistic is a measure of the fit of the
distribution.

* Large values indicate that the observed data were quite.
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Chi-Squared Test

We use the χ2 distribution to compute the chance of observing a test
statistic at least as large as ours under the random scatter model:

P
(
χ26 random variable ≥ 1.0

)
= 0.98.

From this computation, we see that deviations as large as ours (or larger)
are very likely. Hence, we conclude that it appears that the Poisson is a
reasonable initial model.

The hypothesis test performed here is called a chi-square goodness of fit
test.
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Chi-Squared Test

In general, to construct a hypothesis test for a discrete distribution, a
distribution table is constructed from the data, where m represents the
number of categories or values for the response and Nj stands for the
number of observations that appear in category j, j = 1, . . . ,m. These counts
are then compared to what would be expected under the null hypothesis,
i.e. under the assumption that the data does follow poisson distribution:

µj = npj, pj = P ( an observation is in category j ) .

Note that
∑
pj = 1 so

∑
j µj = n.

24



Chi-Squared Test

Sometimes a parameter of the distribution needs to be estimated in order
to compute the probabilities. In this case, data are used to estimate the
unknown parameter(s). The measure of discrepancy between the sample
counts and the expected counts is

m∑
j=1

(jth sample count − jth Expected count)2

jth Expected count =
m∑
j=1

(Nj − µj)
2

µj
.

When the statistic computed in the hypothesis test (called test statistic) is
large it indicated a lack of fit of the distribution
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p-value

Assuming that the data are generated from the hypothesized distribution,
we can compute the chance that the test statics would be as large, or large,
than that observed. This chance is called the observed significance level, or
p-value.

To compute p-value we use χ2 distribution. If the probability model is
correct, then the test statistic has na pproximate chi-squared distribution
with m− k− 1 degrees of freedom, where m is the number of categories and
k is the number of parameters estimated to obtain the expected counts.

χ2m−k−1 is a continuous distribution on the positive real line and the density
has a long right tail. As the degrees of freedom increase it starts to look
symmetric and a lot like normal.
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p-value (cont.)

If the p-value is small, then there is a reason to doubt the fit of the distribu-
tion.

When this is the case, a residual plot can help determine where the lack of
fit occurs. For each category, plot the standardized residuals

sample count− Expected count√
Expectedcount

=
Nj − µj√

µj
.

The denominator transforms residuals in order to give them approximately
equal variance. Square root make sense for meaningful comparisons across
categories.
Note: Sum of residuals is always zero but the sum of standardized residuals is not.
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p-value (cont.)

Values of standardized residual larger than 3 indicate a lack of fit.
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Under the Poisson process model for random scatter, if the total number
of hits in an interval is known, then the positions of the hits are uniformly
scattered across the interval.

In other words, the Poisson process on a region can be viewed as a process
that first generates a random number, which is the number of hits, and then
generated locations for the hits according to the uniform distribution.

Hence, for the CMV DNA, under the uniform random scatter, the positions of
these palindromes are like 296 independent observations from a uniform dis-
tribution. Hence, these locations can be compared to the expected locations
from the uniform distribution.

* If the DNA is split into 10 equal subintervals, the according to the uniform
distribution, we would expect each interval to contain 1/10 of the
palindromes.

* Hence, we perform another χ2 test.
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Which test?

Why did we use 57 intervals over 4000 base pairs in our goodness of fit test?

If we based the test on much shorter interval lengths, we would get many
more intervals but a larger proportion of them would contain zero
palindromes.

For example with an interval length of 400 base pairs, we would get 522 of
the 573 intervals have 0 or 1 palindromes. The distribution of the counts is
now highly skewed and the test is uninformative because a large proportion
of the counts are in two categories (0 or 1 palindromes).

Alternatively, why not use large intervals? Suppose we divide the DNA into
10 large, equal-sized intervals. If we do this, we have hardly enough data to
compare observed and expected numbers of intervals for a particular
palindrome count. Our sample size is 10 but the 10 intervals have 8 different
palindrome counts.
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Spacings and the Exponential and Gamma distributions

Distances between successive hits follows an Exponential distribution.

P (the distance between the first and second hits > t) (1)

= P ( no hits in an interval of length t) = e−λt (2)

Distances between the hits that are two apparatus, follows a Gamma distri-
bution with parameters 2, λ.

Note: E(λ) − Γ(1, λ); χ2k − Γ(k/2, 1/2)
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Maximum Number of Hits

Under the Poisson process model, the numbers of hits in a set of non-overlapping
intervals of the same length are independent observations from a Poisson
distribution. This implies that the greatest number of hits in a collection of intervals
behaves as the maximum of independent Poisson random variables. If we suppose
that there are m such intervals then

P ( maximum count over m intervals ≥ k) (3)
= 1− P ( maximum count over m intervals < k) (4)
= 1− P ( all interval counts < k) (5)
= 1− P ( first interval counts < k)m (6)

= 1−
[
λ0e−λ + · · ·+

λk−1

(k− 1)!
e−λ

]m
(7)

For a given estimate of λ, from the above expression, we ca find the approximate
chance that the greatest number of hits is at least k. If this chance is unusually small,
then it provides evidence for a cluster that is larger than the expected from the
Poisson process. We can use the maximum palindrome counts as a test statistic, and
the computation above provides the p-value for the test statistic.
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Method of moments

Suppose we have an independent sample

x1, . . . , xn

from a Poisson distribution with unknown rate parameter λ.

Method of moments is one estimation technique that proceeds as follows:
1. Find E(X) where X has Poisson distribution with rate λ

2. Express λ in terms of E(X)
3. Replace E(X) with x̄ to produce an estimate of λ, called λ̂.

For Poisson distribution
E(X) = λ =⇒ x̄ = λ̂.

If higher moments need to be computed then E(X2) is replaced with
∑

i x
2
i /n.
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Maximum Likelihood

Suppose we have an independent sample

x1, . . . , xn

from a Poisson distribution with unknown rate parameter λ.

Maximum Likelihoodmethod searches among all Poisson distributions to find
the one that places the highest chance on the observed data.

For Poisson distribution, the chance of observing x1, , xn is

λx1

x1!
e−λ × · · · λ

xn

xn!
e−λ =

λ
∑

i xi∏
i xi!

e−λ := L(λ)

For given data, this is a function of λ that is called the likelihood function.
Maximum likelihood estimates the unknown parameter by the λ-value that
maximized the likelihood function.
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Maximum Likelihood (cont.)

Since the function is monotonically increasing, the log likelihood function,
denoted with l, is maximized at the same value as L. To find the maximum
we consider solving the first-order equation

∂

∂λ
l(λ) = ∂

∂λ

[∑
i

xi log(λ)− nλ−
∑
i

log(xi!)
]
=

∑
i

/λ− n = 0.

By solving the last equation for λ we obtain:

λ̂ = x̄.
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Maximum Likelihood (cont.)

Maximum-likelihood for continuous distributions is the same. Suppose we
have an independent sample

x1, . . . , xn

from an Exponential distribution with the unknown parameter θ. Now, the
Likelihood function, given the data is

L(λ) = θne−θ
∑

i xi ,

and the log-likelihood function

l(θ) = n log(θ)− θ
∑
i

xi.

By solving the last equation for θ we obtain:

θ̂ =
1
x̄ .
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Mean Squared Error

To compare and evaluate parameter estimates, we use mean squared error,
defined as

MSE(λ̂) = E(λ̂− λ)2 = Var(λ̂)variance+
[
E(λ̂)− λ

]2
squared BIAS

Many of the estimators we use are UNBIASED, but sometimes an estimator
with a small bias will have a small MSE.

Theorem

Under certain regularity conditions, as the sample size increases, the
Maximum-likelihood estimator, λ̂ satisfies

λ̂ → λ

λ̂ ∼ N
(
λ,

1
nI(λ)

)
where I(λ) is called the Fisher’s Information Matrix.
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Asymptotic Distribution

Fisher’s Information matrix is defined as

I(λ) = E
(

∂

∂λ
log fλ(X)

)2

= −E
(

∂2

∂λ2
log fλ(X)

)
.

Hence, as n increases √
nI(λ)

(
λ̂− λ

)
∼ N (0, 1).

The approximate normal distribution can be used to build the 95%
confidence interval for the unknown λ as

λ̂± 1.96
√
nI(λ).

Note: An asymptotic variance of the MLE is a lower bound for any other unbiased parameter

estimate.
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Hypothesis Tests

The χ2 goodness-of-fit test and the test for the maximum number of palin-
dromes in an interval, are two examples of hypothesis tests.

Here we provide another example of a hypothesis test, one for parameter
values. We use it to introduce the statistical terms in testing.
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An Example (cont.)

In Hennepin County, a simple random sample of 119 households found an av-
erage radon level of 4.6 pCi/l with a standard deviation as 3.4pCi/l. In neigh-
boring Ramsey County, a simple random sample of 42 households has an
average radon level of 4.5 pCi/l with a standard deviation as 4.9pCi/l. It is
claimed that the households in these two counties have the same average
radon level and that the difference observed in the sample averages is due
to chance variation in the sampling procedure.

To investigate this claim we introduce a hypothesis test.
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An Example (cont.)

We begin with a Probability Model.

Let X1, . . . , X119 denote the radon levels for the Hennepin County and let
Y1, . . . , Y42 denote the radon levels for the Ramsey County. Also set µH and
µR, and σH and σR, denote the average, and standard deviation of the radon
levels in these two counties respectively.

The Null hypothesis is that the average radon levels are the same

H0 : µH = µR

and the Alternative hypothesis is

HR : µH 6= µR.

In hypothesis testing we assume that the H0 is true and find out how likely
our data are under this model.
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An Example (cont.)

We continue by finding estimators for the unknown parameters.

X̄ and Ȳ are good estimators of µH and µR. They are independent and asymp-
totically normally distributed :

X̄ ∼ N
(
µH,

σ2H
119

)
, Ȳ ∼ N

(
µR,

σ2R
42

)
This implies that

X̄− Ȳ ∼ N
(
µH − µR,

σ2H
119 +

σ2R
42

)
and that under the null hypothesis (that is if the null hypothesis is true)

X̄− Ȳ ∼ N
(
0, σ

2
H

119 +
σ2R
42

)
.
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An Example (cont.)

Next step is to find a Test Statistics.

Since X̄ − Ȳ has approximately normal distribution a good candidate for the
test statistic is its rescaled version, that under the null satisfies

Z =
X̄− Ȳ√
σ2H
119 +

σ2R
42

∼ N (0, 1)

We call this test statistic a Z-test, as it is based on normal approximations.
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An Example (cont.)

Next step involves finding the unusual values of the Test Statistic.

Values of Z such that {|Z| > 0.12} are unusual for this setup.

Why ? The magic number 0.12 comes from the observations, i.e. the
observed value of the Test statistics is 0.12.

Then the p-value is computed as :

P
(
|Z| > Zobserved

)
= P (|Z| > 0.12) = 0.90

We are ready to conclude or make a decision:

As p-value > 5%, we conclude that the observations support the Null hypoth-
esis.

If the p-value was < 5% we would have concluded that the observations do
not support the null, and we would reject the null in favour of the
alternative.

The cutoff of 5% is called significance level of a test. 44



An Example (cont.)

Next step involves discovering if we have made erroneous decision!

Note that the p-value is not the chance that the null hypothesis is true: the
hypothesis is either true or not.

When we reject the null hypothesis we don’t know if we have been unlucky
with our sampling and observed a rare event or if we are making the correct
decision.

Decision
fail to reject H0 reject H0

H0 true

X Type 1 Error

Truth
HA true

Type 2 Error X
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An Example (cont.)

Next step involves computing the errors: Type I and Type II errors!

Luckily,

Type I error = α or the significance of the test!

Unluckily, Type II error is a bit complicated !

Type II error := β. Power of a test := 1− β.

Typically α is set in advance and β is computed for various values of the
alternative hypothesis. High power is a sign of a good test.
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An Example (cont.)

For example, the power of the test in this example for α = 0.05 and
µH − µR = 0.5 (which is one specific value in the alternative) is

P
(
|X̄− Ȳ|
0.81 > 1.96

)
(8)

= P
(
|X̄− Ȳ| > 1.96 ∗ 0.81

)
(9)

= P
(
X̄− Ȳ > 1.58

)
+ P

(
X̄− Ȳ < −1.58

)
(10)

= P
(
X̄− Ȳ− 0.5

0.81 > 1.34
)
+ P

(
X̄− Ȳ− 0.5

0.81 < −2.58
)

= 0.09 (11)

That is, the chance that we would reject the null of no difference, given an
actual difference of 0.5 is about 1 in 10. This test is not very powerful in
detecting difference of 0.5 in the population means. A larger sample size
would have given a more powerful test.
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